DOI QR코드

DOI QR Code

Gas Absorption and Release Properties of Zn(BH4)2 and MgH2-Zn(BH4)2-Ni-Ti-Fe Alloy

  • Kwak, Young Jun (Department of Materials Engineering, Graduate School, Chonbuk National University) ;
  • Kwon, Sung Nam (Professional Graduate School of Flexible and Printable Electronics, Chonbuk National University) ;
  • Song, Myoung Youp (Division of Advanced Materials Engineering, Research Center of Advanced Materials Development, Engineering Research Institute, Chonbuk National University)
  • Received : 2014.09.03
  • Accepted : 2014.12.17
  • Published : 2015.01.27

Abstract

$Zn(BH_4)_2$ was prepared by milling $ZnCl_2$ and $NaBH_4$ in a planetary ball mill in an Ar atmosphere, and XRD analysis, SEM observation, FT-IR analysis, DTA, and TGA were performed for synthesized $Zn(BH_4)_2$ samples. 90 wt% $MgH_2$+1.67 wt% $Zn(BH_4)_2(+NaCl)$+5 wt% Ni+1.67 wt% Ti+1.67 wt% Fe (named $90MgH_2+1.67Zn(BH_4)_2(+NaCl)$+5Ni+1.67Ti+1.67Fe) samples were also prepared by milling in a planetary ball mill in an $H_2$ atmosphere. The gas absorption and release properties of the $Zn(BH_4)_2(+NaCl)$ and $90MgH_2+1.67Zn(BH_4)_2(+NaCl)_2(+NaCl)$+5Ni+1.67Ti+1.67Fe samples were investigated. An FT-IR analysis showed that $Zn(BH_4)_2$ formed in the $Zn(BH_4)_2(+NaCl)$ samples prepared by milling $ZnCl_2$ and $NaBH_4$. At the first cycle at $320^{\circ}C$, $90MgH_2+1.67Zn(BH_4)_2(+NaCl)$+5Ni+1.67Ti+1.67Fe absorbed 2.95 wt% H for 2.5 min and 4.93 wt% H for 60 min under 12 bar $H_2$, and released 1.46 wt% H for 10 min and 4.57 wt% H for 60 min under 1.0 bar $H_2$.

Keywords

References

  1. M. Y. Song, Y. J. Kwak, S. H. Lee and H. R. Park, Korean J. Met. Mater., 51, 119 (2013). https://doi.org/10.3365/KJMM.2013.51.2.119
  2. K. I. Kim and T. W. Hong, Korean J. Met. Mater., 49(3), 264 (2011). https://doi.org/10.3365/KJMM.2011.49.3.264
  3. M. Y. Song, Y. J. Kwak, S. H. Lee and H. R. Park, Met. Mater. Int., 19(4), 879 (2013). https://doi.org/10.1007/s12540-013-4033-3
  4. J. J. Reilly and R. H. Wiswall, Inorg. Chem., 6(12), 2220 (1967). https://doi.org/10.1021/ic50058a020
  5. J. J. Reilly and R. H. Wiswall Jr, Inorg. Chem., 7(11), 2254 (1968). https://doi.org/10.1021/ic50069a016
  6. E. Akiba, K. Nomura, S. Ono and S. Suda, Int. J. Hydrogen Energy, 7(10), 787 (1982). https://doi.org/10.1016/0360-3199(82)90069-6
  7. Z. Li, X. Liu, L. Jiang and S. Wang, Int. J. Hydrogen Energy, 32(12), 1869 (2007). https://doi.org/10.1016/j.ijhydene.2006.09.022
  8. J. M. Boulet and N. Gerard, J. Less-Common Met., 89, 151 (1983). https://doi.org/10.1016/0022-5088(83)90261-8
  9. Z. Li, X. Liu, Z. Huang, L. Jiang and S. Wang, Rare Metals, 25(6) (Supplement 1), 247 (2006). https://doi.org/10.1016/S1001-0521(07)60083-7
  10. A. Zuttel, S. Rentsch, P. Fisher, P. Wenger, P. Sudan, Ph. Mauron and Ch. Emmenegger, J. Alloys Compd. 356-357, 515 (2003). https://doi.org/10.1016/S0925-8388(02)01253-7
  11. S. Orimo, Y. Nakamori and A. Zuttel, Mater. Sci. Eng., B 108, 51 (2004). https://doi.org/10.1016/j.mseb.2003.10.045
  12. H. Hagemann, S. Gomes, G. Renaudin and K. Yvon, J. Alloys Compd., 363, 129 (2004). https://doi.org/10.1016/S0925-8388(03)00468-7
  13. G. Renaudin, S. Gomes, H. Hagemann, L. Keller and K. Yvon, J. Alloys Compd., 375, 98 (2004). https://doi.org/10.1016/j.jallcom.2003.11.018
  14. M. Yoshino, K. Komiya, Y. Takahashi, Y. Shinzato, H. Yukawa and M. Morinaga, J. Alloys Compd., 404-406, 185 (2005). https://doi.org/10.1016/j.jallcom.2004.09.078
  15. S. Orimo, Y. Nakamori, G. Kitahara, K. Miwa, N. Ohba, S. Towata and A. Zuttel, J. Alloys Compd., 404-406, 427 (2005). https://doi.org/10.1016/j.jallcom.2004.10.091
  16. J. K. Kang, S. Y. Kim, Y. S. Han, R. P. Muller and W. A. Goddard III, Appl. Phys. Lett., 87, 111904 (2005). https://doi.org/10.1063/1.2042632
  17. R. S. Kumar and A. L. Cornelius, Appl. Phys. Lett., 87, 261916 (2005). https://doi.org/10.1063/1.2158505
  18. Y. Nakamori, K. Miwa, A. Ninomiya, H.-W. Li, N. Ohba, S. Towata, A. Zuttel and S. Orimo, Phys. Rev., B 74, 045126 (2006). https://doi.org/10.1103/PhysRevB.74.045126
  19. Y. Nakamori, H.-W. Li, K. Miwa, S. Towata and S. Orimo, Mater. Trans., 47, 1898 (2006). https://doi.org/10.2320/matertrans.47.1898
  20. T. Nakagawa, T. Ichikawa, Y. Kojima, and H. Fujii, Mater. Trans., 48(3), 556 (2007). https://doi.org/10.2320/matertrans.48.556
  21. V. I. Mikheeva, N. N. Naltseva, and L. S. Alekseeva, Zh. Neorg. Khim., 13, 1301 (1968).
  22. E. Jeon and Y. W. Cho, J. Alloys Compd., 422, 273 (2006). https://doi.org/10.1016/j.jallcom.2005.11.045
  23. E. Jeon and Y. W Cho, Trans. Korean Hydrogen New Energy Soc., 16(3), 262 (2005).
  24. M. Y. Song, M. Pezat, B. Darriet and P. Hagenmuller, J. Mater. Sci., 20, 2958 (1985). https://doi.org/10.1007/BF00553060
  25. Y. J. Kwak, S. H. Lee, H. R. Park, and M. Y. Song, Korean J. Met. Mater., 51(8), 607 (2013). https://doi.org/10.3365/KJMM.2013.51.8.607