DOI QR코드

DOI QR Code

Rapid Synthesis and Consolidation of Nanostructured Ti-TiC Composites from TiH2 and CNT by Pulsed Current Activated Heating

  • Park, Na-Ra (Division of Advanced Materials Engineering, the Research Center of Hydrogen and Fuel Cell, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Hydrogen and Fuel Cell, Chonbuk National University)
  • Received : 2014.11.01
  • Accepted : 2014.12.25
  • Published : 2015.01.27

Abstract

$TiH_2$ nanopowder was made by high energy ball milling. The milled $TiH_2$ and CNT powders were then simultaneously synthesized and consolidated using pulsed current activated sintering (PCAS) within one minute under an applied pressure of 80 MPa. The milling did not induce any reaction between the constituent powders. Meanwhile, PCAS of the $TiH_2$-CNT mixture produced a Ti-TiC composite according to the reaction ($0.92TiH_2+0.08CNT{\rightarrow}0.84Ti+0.08TiC+0.92H_2$, $0.84TiH_2+0.16CNT{\rightarrow}0.68Ti+0.16TiC+0.84H_2$). Highly dense nanocrystalline Ti-TiC composites with a relative density of up to 99.7% were obtained. The hardness and fracture toughness of the dense Ti-8 mole% TiC and Ti-16 mole% TiC produced by PCAS were also investigated. The hardness of the Ti-8 mole% TiC and Ti-16 mole% TiC composites was higher than that of Ti. The hardness value of the Ti-16 mole% TiC composite was higher than that of the Ti-8 mole% TiC composite without a decrease in fracture toughness.

Keywords

References

  1. M. Sherif El-Eskandarany, J. Alloys Compd., 305, 225 (2000). https://doi.org/10.1016/S0925-8388(00)00692-7
  2. L Fu, LH Cao and YS Fan, Scripta Materialia, 44, 1061 (2001). https://doi.org/10.1016/S1359-6462(01)00668-6
  3. H. S. Kang, I. J. Shon, J. M. Doh and J. K. Yoon, Mater. Trans., 55(7), 1109 (2014). https://doi.org/10.2320/matertrans.M2014018
  4. I. J. Shon, H. S. Kang, J. M. Doh, B. J. Park and J. K. Yoon, Mater. Trans., 53, 1539 (2012). https://doi.org/10.2320/matertrans.M2012076
  5. Z Fang, JW Eason, Int. J. Refractory Met. Hard Mater., 13, 297 (1995). https://doi.org/10.1016/0263-4368(95)92675-A
  6. I. J. Shon, K. I. Na, J. M. Doh, H. K. Park and J. K. Yoon, Met. Mater. Int., 19, 99 (2013). https://doi.org/10.1007/s12540-013-1016-3
  7. S. M. Kwak, H. K. Park and I. J. Shon, Korean J. Met. Mater., 51, 314 (2013).
  8. F. Charlot, E. Gaffet, B. Zeghmati, F. Bernard, J. C. Liepce, Mater. Sci. Eng., A262, 279 (1999).
  9. G. W. Lee and I. J. Shon, Korean J. Met. Mater., 51, 95 (2013).
  10. M. K. Beyer, H. Clausen-Schaumann, Chem. Rev., 105, 2921 (2005). https://doi.org/10.1021/cr030697h
  11. J. Jung and S. Kang, Scripta Materialia, 56, 561 (2007). https://doi.org/10.1016/j.scriptamat.2006.12.026
  12. N. R. Park and I. J. Shon, Korean J. Met. Mater., 51, 821 (2013). https://doi.org/10.3365/KJMM.2013.51.11.821
  13. N. R. Park, K. I. Na, H. J. Kwon, J. W. Lim and I. J. Shon, Korean J. Met. Mater., 51, 753 (2013). https://doi.org/10.3365/KJMM.2013.51.10.753
  14. I. J. Shon, S. L. Du, J. M. Doh and J. K. Yoon, Met. Mater. Int., 19, 1041 (2013). https://doi.org/10.1007/s12540-013-5017-z
  15. C Suryanarayana, M Grant Norton, X-ray diffraction a practical approach, p. 213, New York, Plenum Press (1998).
  16. R. L. Coble, J. Appl. Phys., 41, 4798 (1970). https://doi.org/10.1063/1.1658543
  17. H. C. Kim, H. K Park, I. J. Shon and I. Y. Ko, J. Ceram. Process. Res., 7, 327 (2006).
  18. Z Shen, M Johnsson, Z Zhao and M Nygren, J. Am. Ceram. Soc., 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  19. JE Garay, U Anselmi-Tamburini, ZA Munir, SC Glade and P Asoka- Kumar, Appl. Phys. Lett., 85, 573 (2004). https://doi.org/10.1063/1.1774268
  20. JR Friedman, JE Garay, U Anselmi-Tamburini, ZA Munir, Intermetallics, 12, 589 (2004). https://doi.org/10.1016/j.intermet.2004.02.005
  21. JE Garay, U Anselmi-Tamburini and ZA Munir, Acta Mater., 51, 4487 (2003). https://doi.org/10.1016/S1359-6454(03)00284-2
  22. F. Charlot, E. Gaffet, B. Zeghmati, F. Bernard and J. C. Liepce, Mater. Sci. Eng., A262, 279 (1999).
  23. I. J. Shon, S. L. Du, H. S. Kang, J. M. Doh and J. K. Yoon, Mater. Res. Bull., 49, 584 (2014). https://doi.org/10.1016/j.materresbull.2013.09.042
  24. M. K. Beyer and H. Clausen-Schaumann, Chem. Rev., 105, 2921 (2005). https://doi.org/10.1021/cr030697h
  25. GR Anstis, P Chantikul, BR Lawn and DB Marshall, J. Am. Ceram. Soc., 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  26. J. W. Kim and S.H. Kang, J. Alloys Compd., 528, 20 (2012). https://doi.org/10.1016/j.jallcom.2012.02.124
  27. http://en.wikipedia.org/wiki/Elastic properties of the elements (data page).
  28. N. R. Kim, S. W. Cho, W. B. Kim and I. J. Shon, Korean J. Met. Mater., 50(1), 34 (2012). https://doi.org/10.3365/KJMM.2012.50.1.034