DOI QR코드

DOI QR Code

Analysis of pile-up/sink-in during spherical indentation for various strain hardening levels

  • Shankar, S. (Department of Mechatronics Engineering, Kongu Engineering College) ;
  • Loganathan, P. (Department of Mechanical Engineering, EBET Group of Institutions) ;
  • Mertens, A. Johnney (Department of Mechatronics Engineering, Kongu Engineering College)
  • Received : 2013.08.21
  • Accepted : 2014.07.02
  • Published : 2015.02.10

Abstract

The measurement from the indentation process depends on the amount of pile-up or sink-in around the contact impressions. In this paper, finite element concept is utilized to study the pile-up and sink-in behaviour for the wide range of materials with different young's modulus, yield stresses, strain-hardening exponents and coefficient of friction values. The exact indentation model is created by using the two dimensional axisymmetrical model for simulating the spherical indentation process on the lines of Taljat and Pharr (2004) work. The result shows that during spherical indentation process the amount of pile-up is greatly influenced by the strain hardening exponents in addition to other material properties and depth of penetration. The numerical results from the finite element analysis are also validated using the exact multilinear material properties obtained from the tensile testing for the materials like mild steel, brass and aluminium.

Keywords

References

  1. Lin, D.C., Shreiber, D.I., Dimitriadis, E.K. and Horkay, F. (2009), "Spherical indentation of soft matter beyond the Hertzian regime: numerical and experimental validation of hyperelastic models", Biomech. Model. Mech., 8(5), 345-358. https://doi.org/10.1007/s10237-008-0139-9
  2. Lee, H.G., Lee, J.H. and Pharr, G.M. (2005), "A numerical approach to spherical indentation techniques for material property evaluation", J. Mech. Phys. Solid., 53(9), 2037-2069. https://doi.org/10.1016/j.jmps.2005.04.007
  3. Habbab, H., Mellor, B.G. and Syngellakis, S. (2006), "Post-yield characterisation of metals with significant pile-up through spherical indentation", Acta Materialia, 54(7), 1965-1973. https://doi.org/10.1016/j.actamat.2005.12.021
  4. Hernot, X., Bartier, O., Bekouche, Y., El Abdi, R. and Mauvoisin, G. (2006), "Influence of penetration depth and mechanical properties on contact radius determination for spherical indentation", Int. J. Solid. Struct., 43(14), 4136-4153. https://doi.org/10.1016/j.ijsolstr.2005.06.007
  5. Lee, J.H., Kim, T.H. and Lee, H.G. (2010), "A study on robust indentation techniques to evaluate elasticplastic properties of metals", Int. J. Solid. Struct., 47(5), 647-664. https://doi.org/10.1016/j.ijsolstr.2009.11.003
  6. Kucharski, S. and Mroz, Z. (2007), "Indentation of yield stress and plastic hardening parameters from a spherical indentation test", Int. J. Mech. Sci., 49(11), 1238-1250. https://doi.org/10.1016/j.ijmecsci.2007.03.013
  7. Mata, M. and Alcala, J. (2004), "The role of friction on sharp indentation", J. Mech. Phys. Solid., 52(1), 145-165. https://doi.org/10.1016/S0022-5096(03)00075-9
  8. Oliver, W.C. and Pharr, G.M. (1992), "Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments", J. Mater. Res., 7(6), 1564-1583. https://doi.org/10.1557/JMR.1992.1564
  9. Poon, B., Rittel, D. and Ravichandran, G. (2008), "An analysis of nanoindentation in linearly elastic solids", Int. J. Solid. Struct., 45(24), 6018-6033. https://doi.org/10.1016/j.ijsolstr.2008.07.021
  10. Pharr, G.M. (1998), "Measurement of mechanical properties by ultra-low load indentation", Mater. Sci. Eng., 253(1), 151-159. https://doi.org/10.1016/S0921-5093(98)00724-2
  11. Shankar, S. and Mayuram, M.M. (2008), "Effect of strain hardening in elastic-plastic transition behavior in a hemisphere in contact with a rigid flat", Int. J. Solid. Struct., 45(10), 3009-3020. https://doi.org/10.1016/j.ijsolstr.2008.01.017
  12. Mesarovic, S.D. and Fleck, N.A. (1999), "Spherical indentation of elastic-plastic solids", Proc. Royal Soc., 455(1987), 2707-2728. https://doi.org/10.1098/rspa.1999.0423
  13. Taljat, B. and Pharr, G.M. (2004), "Development of pile-up during spherical indentation of elastic-plastic solids", Int. J. Solid. Struct., 41(14), 3891-3904. https://doi.org/10.1016/j.ijsolstr.2004.02.033
  14. Yan, W., Sun, Q., Feng, X.Q. and Qian, L. (2007), "Analysis of spherical indentation of super elastic shape memory alloys", Int. J. Solid. Struct., 44(1), 1-17. https://doi.org/10.1016/j.ijsolstr.2006.04.007
  15. Chen, X., Hutchinson, J.W. and Evans, A.G. (2005), "The mechanics of indentation induced lateral cracking", J. Am. Ceramic Soc., 88(5), 1233-1238. https://doi.org/10.1111/j.1551-2916.2005.00281.x
  16. Wei, Y. and Hutchinson, J.W. (2003), "Hardness trends in micron scale indentation", J. Mech. Phys. Solid., 51(11), 2037-2056. https://doi.org/10.1016/j.jmps.2003.09.011

Cited by

  1. Numerical modelling of a pile-supported embankment using variable inertia piles vol.61, pp.2, 2015, https://doi.org/10.12989/sem.2017.61.2.245
  2. Friction, wear and deformed structure of Ag and Ni under early stages of scratching vol.462, pp.None, 2015, https://doi.org/10.1016/j.wear.2020.203510