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Abstract
The process of oxidizing polyacrylonitrile (PAN)-based carbon fibers converts them into an 
infusible and non-flammable state prior to carbonization. This represents one of the most 
important stages in determining the mechanical properties of the final carbon fibers, but the 
most commonly used methods, such as thermal treatment (200°C to 300°C), tend to waste 
a great deal of process time, money, and energy. There is therefore a need to develop more 
advanced oxidation methods for PAN precursor fibers. In this review, we assess the viability 
of electron beam, gamma-ray, ultra-violet, and plasma treatments with a view to advancing 
these areas of research and their industrial application.
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1. Introduction

Carbon fibers are thin filament materials that contain over 92 wt% carbon [1-3], which 
gives them high strength, stiffness, temperature resistance, thermal conductivity, and good 
chemical resistance in addition to light weight and low density when compared to most met-
als and ceramics [4-6]. As a result, carbon reinforced materials have been widely used in a 
variety of aerospace, automotive and marine applications, as well as various machine parts, 
wind turbine blades, high-grade sporting goods, etc. [7-9]. Carbon fibers can be classified 
based on how the fibers are derived, from polyacrylonitrile (PAN), pitch, rayon, or gaseous 
precursors [10-15]. PAN has tended to be the most widely used precursor for high-perfor-
mance carbon fibers [16-22]. Most useful carbon materials have also been modified by sev-
eral surface treatments, such as anodic oxidation [23], plasma [24,25], oxyfluorination [26], 
ozonization [27], or fluorination [28], Ar ion beam [29-31], several metal coatings [32-34], 
chemical treatments [35,36]. These treatments enable or enhance function and performance 
in real industrial applications, including adsorption [37], toxic removal [38,39], catalysis 
[40-42], adhesion or composites [43,44], electrochemistry [45-47], and so on.

The precursor PAN fiber is an atactic and linear polymer with C≡N bonding, as shown 
in Fig. 1. This C≡N bond means that the PAN precursor has a glass transition temperature 
(Tg) of around 120°C, and therefore typically decomposes before melting, meaning that it is 
essential that it first be stabilized prior to carbonization. Typically, this is accomplished by 
oxidation of PAN by thermal treatment in air at 200°C to 300°C (Fig. 2), which changes it 
into infusible and non-flammable fibers with a predominance of cyclic or ladder structures 
(Fig. 3) that prevent melting during subsequent carbonization [48-56]. 

Oxidation is therefore one of the most important processes in determining the mechanical 
properties of the carbon fiber; in this regard, most past reviews have focused on the thermal 
oxidation of PAN. For example, Rahaman et al. [57] briefly reviewed heat treatments for the 
conversion of PAN precursor fibers into carbon fibers, while Liu and Kumar [58] provided a 
more detailed report pertaining to recent developments in carbon fiber technology and demon-
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ene wire insulation in the late 1950s. In more recent years, the 
number of electron accelerators has grown to exceed 1500, as 
they are now widely used for a range of scientific and indus-
trial applications [60]. Generally speaking, electron beam (EB) 
accelerators can be divided into three broad categories, based 
on their energy output [61]. Low-energy EB accelerators (120-
300 keV) are most commonly used for adhesives, coatings for 
paper, multilayer packaging, and the surface grafting of mem-
branes [62]. Mid-energy EB accelerators (300 keV to 5 MeV) 
are utilized for the polymerization of monomers, the grafting 
of monomers onto polymers, the cross-linking of polymers, the 
degradation of polymers and fiber modification [63-76]. Finally, 
high-energy (5-10 MeV) EB accelerators are used for the steril-
ization of medical devices, pharmaceutical and biological prod-
ucts, bio-ethanol products, and the treating of industrial effluent 
[60,65,77-101]. Through careful selection and control over the 
EBI conditions used for modifying polymer materials, physical, 
chemical, and biological properties can be improved without the 
use of a solvent. Furthermore, since only normal temperatures 
and pressures are required, it provides a simple and eco-friendly 
means of producing carbon fibers. Fig. 4 is a schematic illustra-
tion of EBI stabilization and the carbonization of PAN fibers.

Shin et al. [102] investigated the possibility of using an EB 
accelerator at an acceleration of 1.14 MeV and beam current of 8 

strated the relationship between the processing conditions and the 
chemical/physical structure and tensile properties. However, ther-
mal stabilization not only requires long periods of time (2-3 h), but 
also has high cost and energy consumption [59]. This has led to 
the development of advanced methods for oxidizing PAN precursor 
fibers based on various forms of radiation, which induce a change 
in the polymer structure, but these still need further improvement to 
make them more convenient and eco-friendly.

In this review, we summarize the progress that has been made 
in the various radiation oxidation processes for PAN precursor 
fibers, and provide some details as to the preparation and charac-
terization of PAN fibers prepared by these methods.

2. Radiation Induced Stabilization of PAN Fibers

2.1. Oxidation by electron beam irradiation

Electron beam irradiation (EBI) is ionizing radiation process 
performed by a linear accelerator, and has been used industrially 
ever since it was first applied to the crosslinking of polyethyl-

Fig. 1. Molecular structure of polyacrylonitrile precursor.

Fig. 2. Schematics of thermal oxidation process line; (Zone 1-Zone 10): 
temperature zoned, (T1-T6): stretching rollers. PAN: polyacrylonitrile.

Fig. 3. Schematic depicting the thermal chemistry during the oxidation of polyacrylonitrile fiber.

Fig. 4. Schematic illustration of electron beam generation by a linear 
accelerator and photos of electron beam irradiation (EBI)-stabilized poly-
acrylonitrile (PAN) fibers and carbon fibers.
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irradiation process is different than that for EBI. Gamma radia-
tion can completely penetrate materials and can be applied to 
various kinds of materials, but has some drawbacks. The dose is 
a few orders of magnitude lower and therefore requires a longer 
residence time compared to EBI. 

Tan and Wan [109] used gamma-ray irradiation to investigate 
structural changes in irradiated PAN precursor fibers. PAN fibers 
were wound onto a frame of about 20 cm in a glass container 
and exposed to gamma radiation for 25 or 50 h with an irradia-
tion dose rate of 2.0 kGy/h. Structural changes of the irradiated 
PAN fibers were characterized by FT-IR, DSC, thermogravimet-
ric analysis (TGA), and XRD. In the FT-IR spectra, gamma-ray 
irradiated PAN fibers exhibited reduced peak intensity of C≡N 
groups but increased peak intensities of C=O, C=N and C=C 
groups. These results suggest that gamma-ray irradiation induc-
es chemical conversions of the linear structure of PAN precursor 
fibers into ladder structures of stabilized PAN fibers, similar to 
thermal stabilization. In the DSC analysis, the PAN precursor 
fibers showed a sharp exothermic peak at 280.9°C while the 
gamma-ray irradiated PAN fibers showed a broad and reduced 
peak intensity due to reduction of activation energy by conver-
sion of their chemical structure. In addition, the irradiated PAN 
fibers showed smaller weight loss in TGA. 

As these results show, gamma-ray irradiation exhibits the po-
tential to improve the stabilization of PAN precursor fibers as 
compared with thermal methods. To increase the yield of carbon 
fibers, Liu et al. [110] preoxidized gamma-ray irradiated PAN 
fibers and researched the variation in density of the gamma-ray 
irradiated PAN fibers with and without preoxidation. Density in 
the stabilized fibers increased due to cyclization and oxygen up-
take during stabilization. Density measurement was particularly 
important in evaluating the influence of radiation processes on 
the preoxidized PAN fibers. Finally, they found that the gamma-
ray irradiated PAN fibers with various types of peroxidation in-
creased in density with an increase in the peroxidation time and 
temperature. 

In addition, Liu et al. [111] studied the radiation oxidation 
of PAN fibers in ways unlike previous researchers. Generally, 
PAN fibers have mainly been irradiated without oxygen to avoid 
oxidation degradation. However, the introduction of oxygen in 
PAN fibers can facilitate thermal oxidation curing, for producing 
carbon fibers. In the results of the gel fraction, they observed that 
oxidation reactions were limited to the surface of the PAN fibers 
because oxygen has difficulty in penetrating the fibers. But, the 
radiation-oxidized regions have been completely changed to gel 
by inducing the thermal composition. The above gamma-ray ir-

mA to oxidize PAN fibers, testing the effects of 500, 1000, 2000, 
3000, and 5000 kGy doses of absorbed radiation. In that work, 
both the PAN precursor fibers and EBI-oxidized fibers were ana-
lyzed by Fourier-transform infrared spectroscopy (FT-IR), gel 
fraction, density, differential scanning calorimetry (DSC), X-ray 
diffraction (XRD) and mechanical measurements. The structural 
change in PAN fibers resulting from oxidation by EBI was evi-
denced by a decrease in the intensity of the peaks at 1451 cm-1 
and 2244 cm-1, which were attributed to the stretching vibra-
tion of C-H and C≡N. The gel fraction and density test results 
revealed an increase in the degree of cyclization with increasing 
EBI dose, with a resulting increase in amorphization, causing 
a reduction in the tensile strength of the fibers. In the typical 
DSC curves, however, the EBI-oxidized PAN fibers showed a 
decrease in the activation energy required for exothermic reac-
tion with increasing EBI dose.

Shin et al. [103] also looked into producing carbon fiber from 
PAN fibers through a combination of short thermal treatment 
and EBI, wherein PAN fibers, irradiated by 1000 kGy of EB 
energy, were thermally oxidized at 200°C or 250°C for 20 or 
40 min, respectively. The results of FT-IR analysis showed that 
the C≡N peak at 2244 cm-1almost disappeared after 40 min at 
250°C, while the intensity of the C=N peak at 1628 cm-1was 
indicative of an increase in cyclization. Through DSC analysis, 
thermal treatment at either 200°C or 250°C was found to cause 
a sharp decrease in the majority of exothermic peaks. The sta-
bilization index of PAN fibers treated at 250°C for 40 min was 
99.21%. Finally, the tensile strength of the resulting carbon fiber 
was around 2.3 GPa, with the cross-sectional image of a single 
fiber clearly demonstrating the brittle nature of its morphology. 
This therefore demonstrates that a combination of EBI and ther-
mal treatment can reduce the time normally required for oxida-
tion (2-3 h) by over an hour, yet still produce carbon fibers with 
a high tensile strength.

 Kim et al. [104] applied an EB accelerating voltage of 1.14 
MeV and a beam current of 1 mA to stabilize PAN nanofiber 
(NF) mats using dosages ranging from 500 to 5000 kGy. The 
stabilized mats were subsequently used to form carbon NF mats, 
which exhibited a similar morphology to the pristine PAN NF 
mats and contained no significant defects. 

Choi et al. [105] used the EBI-H2O2 method to oxidize PAN 
NFs, in which 1% H2O2 solution-sprayed PAN NFs were irradi-
ated by an EB. In the FT-IR spectrum obtained, EBI-H2O2 stabi-
lization was shown to induce the transformation of C≡N to C=N 
in PAN NFs with significantly less defects than if EBI treatment 
alone were used. This was particularly evident in the DSC analy-
sis, which revealed that 50 kGy EBI-H2O2 treatment reduced the 
activation energy of exothermic reactions in PAN NFs to a level 
comparable to that obtained with 500 kGy EBI treatment. Thus, 
in the EBI-H2O2 treatment, electrons are capable of oxidizing 
PAN NFs at a lower radiation dose than EBI alone.

2.2. Oxidation by gamma-ray irradiation 

Gamma-ray radiation, emitted in all directions from radionu-
clides such as 137Cs or 60 Co (Fig. 5) or high energy EBI, which 
is ionizing radiation generated by electricity and magnetism ac-
celerating electrons to a high energy level, are both known to 
similarly influence materials [106-108]. However, the gamma 

Fig. 5. Schematics of gamma-ray emission from atomic nucleus.
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C=N bonds increased more than that of PAN fibers which had 
been thermally oxidized at 220°C for 30 min. This peak was 
stronger with plasma treatment. However, the peak intensity at 
2243 cm-1 assigned to C≡N decreased with more exposure to 
plasma treatment. In the tensile test results of the obtained carbon 
fibers, carbon fibers obtained from PAN fibers oxidized by heat 
and plasma treatment did not exhibit outstanding improvements 
in tensile properties, compared to PAN fibers oxidized by conven-
tional thermal treatment. However, the results of plasma treatment 
showed that it could reduce time and temperature in the oxidation 
process for manufacturing carbon fibers. 

The mechanism and efficiency of the plasma oxidation of 
PAN fibers, and the mechanical properties of the resulting car-
bon fiber, were further investigated by Lee et al. [122]. By com-
paring the degree of cyclization in plasma- and thermal-oxidized 
PAN fibers using FT-IR, they found that the extent of cyclization 
reaction is equal to the intensity of the 1595 cm-1 peak for C=N 
divided by the intensities of the 1595 cm-1 and 2243 cm-1 peaks. 
Their results showed that the extent of cyclization in plasma-
oxidized PAN fibers is much higher than in thermally oxidized 
PAN, to the extent that 15 min of plasma treatment is compara-
ble to 120 min of thermal treatment. This means that PAN fibers 
are more easily and more rapidly oxidized by the oxygen species 
induced by plasma treatment, and the resulting carbon fiber has 
a tensile strength (2.8 ± 0.3 GPa) that is 30% greater than carbon 
fiber produced from thermally oxidized PAN fibers. 

3. Conclusion

This review summarizes the feasibility of the three major 
categories of radiation induced polymer stabilization processes: 
EB, γ-radiation, UV, and plasma treatment. Of the various pre-
cursors available for carbon fiber, PAN precursor fibers were 
selected as the subject of focus. All three forms of treatment 
have been proven capable of efficiently transforming the C≡N 
bonds of PAN into C=N bonds in a manner that is both simpler 
and faster than conventional thermal treatment. Furthermore, the 
carbon fibers produced from EB and plasma oxidized PAN fibers 
exhibit an enhanced tensile strength over carbon fiber obtained 
by thermal stabilization. It is therefore concluded that further de-
velopment of these radiation-based oxidation processes can not 

radiation technologies illustrate the method’s potential advan-
tages, and suggest gamma-ray irradiation is one of the advanced 
oxidation methods that can be applied for oxidation of PAN fi-
bers, except for the very long residence time during oxidation. 

 
2.3. Ultra-violet oxidation

Electromagnetic radiation in the ultra-violet (UV) spectrum 
has the ability to excite electrons to higher energy orbital levels, 
which directly affects the nature of atomic bonds and changes 
the physical and mechanical properties of materials [112,113]. 
Several researchers have therefore investigated the effect that 
UV treatment has on the mechanical and chemical properties 
of various fibers [114,115]. Among them, Paiva et al. [116] ex-
plored the possibility of using UV oxidation to produce carbon 
fibers from melt-processible PAN-based copolymers (acryloni-
trile [AN]:methyl acrylate [MA] = 88:12), wherein UV-irradiat-
ed melt-spun fibers were thermally oxidized prior to being car-
bonized at 1500°C. However, the carbon fibers obtained by this 
method exhibited a low mechanical strength of around 350 MPa 
due to the number and size of defects contained within them. 

A later study by Morales and Ogale [117] achieved the UV-
assisted stabilization of wet-spun, photoinitiator-modified PAN 
precursor fibers by adding 4,40-bis(diethylamino)-benzophenone 
(BDP) as a photoinitiator to reduce the thermal oxidation pro-
cessing time, and thereby enhance the physical properties of the 
resulting carbon fibers. The precursor fibers were spun from a 
solution consisting of PAN powder dissolved in BDP to a mass 
ratio of 99:1, with the resulting fibers then being irradiated using 
a UV curing lamp with two different UV sources (mercury or iron 
halide bulb). They found that those fibers irradiated by a halide 
bulb exhibited a higher tensile modulus than PAN fibers irradiated 
by a mercury bulb, which was attributed to the difference in the 
spectral output of each bulb type. However, in both instances, the 
tensile modulus was still higher than that of pure PAN fibers, ther-
mally treated PAN fibers with 1 wt% BDP, and UV-irradiated and 
pure PAN fibers. In addition, the application of 5 min of UV treat-
ment to PAN precursor fibers containing 1 wt% BDP was found 
to be roughly comparable to the first 83 min of thermal oxidation. 
These results illustrate the potential savings that UV irradiation 
can offer in the stabilization of PAN precursor fibers, while still 
retaining the mechanical properties of the final carbon fiber.

2.4. Plasma oxidation

Plasma can be described as a strongly ionized gas that con-
tains ions, radicals, excited molecules, and free electrons. Ow-
ing to its free electrical charge, plasma is electrically conductive 
and its magnetic field can strongly influence a gas. By apply-
ing these principals, polymer materials treated with plasma can 
be drastically altered in terms of their chemical structure and 
surface properties. In addition, plasma treatment (Fig. 6) is a 
simple, effective, and versatile technique for stabilization or sur-
face treatment in the plasma zone [15,118-121]. 

Lee et al. [121] researched the effect of plasma assisted oxida-
tion on the tensile properties of PAN based carbon fibers at differ-
ent plasma exposure times. PAN fibers were thermally oxidized at 
220°C for 30 min with an added plasma treatment for 5 min more. 
In the FT-IR spectra, the peak intensity at 1595 cm-1 assigned to 

Fig. 6. Schematic diagram of plasma treatment. PAN: polyacrylonitrile.
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