DOI QR코드

DOI QR Code

Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea

표준강수증발산지수를 활용한 미래 가뭄특성의 시계열 변화전망

  • Nam, Won-Ho (Research Associate, National Drought Mitigation Center (NDMC), School of Natural Resources, University of Nebraska-Lincoln) ;
  • Hayes, Michael J. (National Drought Mitigation Center (NDMC) and School of Natural Resources, University of Nebraska-Lincoln) ;
  • Wilhite, Donald A. (School of Natural Resources, University of Nebraska- Lincoln) ;
  • Svoboda, Mark D. (National Drought Mitigation Center (NDMC), University of Nebraska-Lincoln)
  • Received : 2014.10.08
  • Accepted : 2014.11.27
  • Published : 2015.01.30

Abstract

Recent droughts in South Korea have had large economic and environmental impacts across the country. Changes in rainfall and hydrologic patterns due to climate change can potentially increase the occurrence of extreme droughts and affect the future availability of water resources. Therefore, it is necessary to evaluate drought vulnerability for water resources planning and management, and identify the appropriate mitigation actions to conduct a drought risk analysis in the context of climate change. The objective of this study is changes in the temporal trends of drought characteristics in South Korea to examine drought impacts under climate change. First, the changes of drought occurrence were analyzed by applying the Standardized Precipitation Evapotranspiration Index (SPEI) for meteorological data on 54 meteorological stations, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions. These results show the high influence of climate change on drought phenomenon, and will contribute to water resources management and drought countermeasures to climate change.

Keywords

References

  1. Alley, W.M., 1984. The palmer drought severity index: limitations and assumptions. Journal of Climate and Applied Meteorology 23: 1100-1109. https://doi.org/10.1175/1520-0450(1984)023<1100:TPDSIL>2.0.CO;2
  2. Bae, D.H., K.H. Sohn, and H.A. Kim, 2013a. Derivation & evaluation of drought threshold level considering hydrometeorological data on South Korea. Journal of the Korean Water Resources Association 46(3): 287-299 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.3.287
  3. Bae, D.H., K.H. Sohn, H.K. Kim, J.H. Lee, D.R. Lee, J.H. Ahn, and T.W. Kim, 2013b. Standardization and evaluation of PDSI calculation method for Korean drought management agencies. Atmosphere. Korean Meteorological Society 23(4): 539-547 (in Korean).
  4. Begueria, S., S.M. Vicente-Serrano, F. Reig, and B. Latorre, 2014. Standardized precipitation evapotranspiration index (SPEI) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. International Journal of Climatology 34: 3001-3023. https://doi.org/10.1002/joc.3887
  5. Byun, H.R., and D.A. Wilhite, 1999. Objective quantification of drought severity and duration. Journal of Climate 12: 2747-2756. https://doi.org/10.1175/1520-0442(1999)012<2747:OQODSA>2.0.CO;2
  6. Choi, C.H., D.G. Choi, E.S. Kim, and S.D. Kim, 2010. Effects of climate change on spatio-temporal behavior of drought using SAD analysis. Journal of Korean Society of Hazard Mitigation 10(6): 89-97 (in Korean).
  7. Guttman, N.B., 1998. Comparing the palmer drought index and the standardized precipitation index. Journal of the American Water Resources Association 34(1): 113-121. https://doi.org/10.1111/j.1752-1688.1998.tb05964.x
  8. Hayes, M.J., M.D. Svoboda, D.A. Wilhite, and O.V. Vanyarkho, 1999. Monitoring the 1996 drought using the standardized precipitation index. Bulletin of the American Meteorological Society 80: 429-438. https://doi.org/10.1175/1520-0477(1999)080<0429:MTDUTS>2.0.CO;2
  9. Hayes, M.J., O.V. Wilhelmi, and C.L. Knutson, 2004. Reducing drought risk: bridging theory and practice. Natural Hazards Review 5(2): 106-113. https://doi.org/10.1061/(ASCE)1527-6988(2004)5:2(106)
  10. Hayes, M., M. Svoboda, N. Wall, and M. Widhalm, 2011. The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bulletin of the American Meteorological Society 92: 485-488. https://doi.org/10.1175/2010BAMS3103.1
  11. Intergovernmental Panel on Climate Change (IPCC), 2013. Climate change 2013: the physical science basis. Working group I contribution to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
  12. Jeung, S.J., J.H. Sung, and B.S. Kim, 2013. Change projection of extreme indices using RCP climate change scenario. Journal of the Korean Water Resources Association 46(11): 1089-1101 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.11.1089
  13. Kang, S.U., and J.I. Moon, 2014. Drought analysis using SC-PDSI and derivation of drought severity-duration-frequency curves in North Korea. Journal of the Korean Water Resources Association 47(9): 813-824 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.9.813
  14. Kim, B.S., J.H. Sung, H.S. Kang, and C.H. Cho, 2012a. Assessment of drought severity over South Korea using standardized precipitation evapotranspiration index (SPEI). Journal of the Korean Water Resources Association 45(9): 887-900 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.9.887
  15. Kim, B.S., J.H. Sung, B.H. Lee, and D.J. Kim, 2013a. Evaluation on the impact of extreme droughts in South Korea using the SPEI and RCP8.5 climate change scenario. Journal of Korean Society of Hazard Mitigation 13(2): 97-109 (in Korean). https://doi.org/10.9798/KOSHAM.2013.13.2.097
  16. Kim, M.K., M.S. Han, D.H. Jang, S.G. Baek, W.S. Lee, Y.H. Kim, and S. Kim, 2012b. Production technique of observation grid data of 1km resolution. Journal of Climate Research 7(1): 55-68 (in Korean).
  17. Kim, M.K., D.H. Lee, and J. Kim, 2013b. Production and validation of daily grid data with 1km resolution in South Korea. Journal of Climate Research 8(1): 13-25 (in Korean).
  18. Kim, M.S., and Y.I. Moon, 2014. A study on target standardized precipitation index in Korea. Journal of the Korean Society of Civil Engineers 34(4): 1117-1123 (in Korean). https://doi.org/10.12652/Ksce.2014.34.4.1117
  19. Korea Meteorological Administration (KMA), 2010. Understanding of climate change and application of climate change scenarios. National Institute of Meteorological Research, Seoul, South Korea (in Korean).
  20. Kwak, J.W., S.D. Lee, Y.S. Kim, and H.S. Kim, 2013. Return period estimation of droughts using drought variables from standardized precipitation index. Journal of the Korean Water Resources Association 46(8): 795-805 (in Korean). https://doi.org/10.3741/JKWRA.2013.46.8.795
  21. Kwon, H.J., H.J. Park, D.O. Hong, and S.J. Kim, 2006. A study on semi-distributed hydrologic drought assessment modifying SWSI. Journal of the Korean Water Resources Association 39(8): 645-658 (in Korean). https://doi.org/10.3741/JKWRA.2006.39.8.645
  22. Lee, J.H., J.W. Seo, and C.J. Kim, 2012a. Analysis on trends, periodicities and frequencies of Korean drought using drought indices. Journal of the Korean Water Resources Association 45(1): 75-89 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.1.75
  23. Lee, J.H., K.J. Cho, C.J. Kim, and M.J. Park, 2012b. Analysis on the spatio-temporal distribution of drought using potential drought hazard map. Journal of the Korean Water Resources Association 45(10): 983-995 (in Korean). https://doi.org/10.3741/JKWRA.2012.45.10.983
  24. McKee, T.B., N.J. Doeskin, and J. Kleist, 1993. The relationship of drought frequency and duration to time scales. Preprints, 8th Conference on Applied Climatology, Anaheim, CA, American Meteorological Society: 179-184.
  25. Nam, W.H., S.H. Yoo, M.W. Jang, and J.Y. Choi, 2008. Application of meteorological drought indices for North Korea. Journal of the Korean Society of Agricultural Engineers 50(3): 3-15 (in Korean). https://doi.org/10.5389/KSAE.2008.50.3.003
  26. Nam, W.H., J.Y. Choi, S.H. Yoo, and B.A. Engel, 2012a. A real-time online drought broadcast system for monitoring soil moisture index. KSCE Journal of Civil Engineering 16(3): 357-365. https://doi.org/10.1007/s12205-012-1357-3
  27. Nam, W.H., J.Y. Choi, S.H. Yoo, and M.W. Jang, 2012b. A decision support system for agricultural drought management using risk assessment. Paddy Water Environment 10(3): 197-207. https://doi.org/10.1007/s10333-012-0329-z
  28. Nam, W.H., and J.Y. Choi, 2014. Development of an irrigation vulnerability assessment model in agricultural reservoirs utilizing probability theory and reliability analysis. Agricultural Water Management 142: 115-126. https://doi.org/10.1016/j.agwat.2014.05.009
  29. Nam, W.H., M.J. Hayes, D.A. Wilhite, T. Tadesse, M.D. Svoboda, and C.L. Knutson, 2014a. Drought management and policy based on risk assessment in the context of climate change. Magazine of the Korean Society of Agricultural Engineers 56(2): 2-15 (in Korean).
  30. Nam, W.H., E.M. Hong, T.G. Kim, and J.Y. Choi, 2014b. Projection of future water supply sustainability in agricultural reservoirs under RCP climate change scenarios. Journal of the Korean Society of Agricultural Engineers 56(4): 59-68 (in Korean). https://doi.org/10.5389/KSAE.2014.56.4.059
  31. Palmer, W.C., 1965. Meteorological drought. Research Paper 45, U.S. Department of Commerce.
  32. Park, B.S., J.H. Lee, C.J. Kim, and H.W. Jang, 2013. Projection of future drought of Korea based on probabilistic approach using multi-model and multi climate change scenarios. Journal of the Korean Society of Civil Engineers 33(5): 1871-1885 (in Korean). https://doi.org/10.12652/Ksce.2013.33.5.1871
  33. Park, M.J., H.J. Shin, Y.D. Choi, J.Y. Park, and S.J. Kim, 2011. Development of a hydrological drought index considering water availability. Journal of the Korean Society of Agricultural Engineers 53(6): 165-170 (in Korean). https://doi.org/10.5389/KSAE.2011.53.6.165
  34. Rim, C.S., and S.Y. Kim, 2014. Climate aridity/humidity characteristics in Seoul according to changes in temperature and precipitation based on RCP 4.5 and 8.5. Journal of the Korean Water Resources Association 47(5): 421-434 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.5.421
  35. Shafer, B.A., and L.E. Dezman, 1982. Development of surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas. Proceedings of the Western Snow Conference: 164-175.
  36. So, J.M., K.H. Sohn, and D.H. Bae, 2014. Estimation and assessment of bivariate joint drought index based copula functions. Journal of the Korean Water Resources Association 47(2): 171-182 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.2.171
  37. Sohn, K.H., D.H. Bae, and J.H. Ahn, 2014. Projection and analysis of drought according to future climate and hydrological information in Korea. Journal of the Korean Water Resources Association 47(1): 71-82 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.1.71
  38. Sung, J.H., and E.S. Chung, 2014. Application of streamflow drought index using threshold level method. Journal of the Korean Water Resources Association 47(5): 491-500 (in Korean). https://doi.org/10.3741/JKWRA.2014.47.5.491
  39. Svoboda, M., D. LeComte, M. Hayes, R. Heim, K. Gleason, J. Angel, B. Rippey, R. Tinker, M. Palecki, D. Stooksbury, D. Miskus, and S. Stephens, 2002. The drought monitor. Bulletin of the American Meteorological Society 83(8): 1181-1190. https://doi.org/10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2
  40. Thornthwaite, C.W., 1948. An approach toward a rational classification of climate. Geographical Review 38(1): 55-94. https://doi.org/10.2307/210739
  41. Vicente-Serrano, S.M., S. Begueria, and J.I. Lopez-Moreno, 2010. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. Journal of Climate 23: 1696-1718. https://doi.org/10.1175/2009JCLI2909.1
  42. Wilhite, D.A., M.J. Hayes, C. Knutson, and K.H. Smith, 2000. Planning for drought: moving from crisis to risk management. Journal of the American Water Resources Association 36(4): 697-710. https://doi.org/10.1111/j.1752-1688.2000.tb04299.x
  43. Wilhite, D.A., M.D. Svoboda, and M.J. Hayes, 2007. Understanding the complex impacts of drought: a key to enhancing drought mitigation and preparedness. Water Resources Management 21: 763-774. https://doi.org/10.1007/s11269-006-9076-5
  44. Wilhite, D.A., M.V.K. Sivakumar, and R. Pulwarty, 2014. Managing drought risk in a changing climate: the role of national drought policy. Weather and Climate Extremes 3: 4-13. https://doi.org/10.1016/j.wace.2014.01.002
  45. Yevjevich, V., 1967. An objective approach to definition and investigations of continental hydrologic droughts. Hydrology Paper No. 23, Colorado State University, Fort Collins, USA.
  46. Yoo, J.Y., M.H. Choi, and T.W. Kim, 2010. Spatial analysis of drought characteristics in Korea using cluster analysis. Journal of the Korean Water Resources Association 43(1): 15-24 (in Korean). https://doi.org/10.3741/JKWRA.2010.43.1.15
  47. Yoo, J.Y., H.Y. Song, T.W. Kim, and J.H. Ahn, 2013. Evaluation of short-term drought using daily standardized precipitation index and ROC analysis. Journal of the Korean Society of Civil Engineers 33(5): 1851-1860 (in Korean). https://doi.org/10.12652/Ksce.2013.33.5.1851
  48. Yoo, J.Y., H.H. Kwon, T.W. Kim, and S.O. Lee, 2014. Probabilistic assessment of drought characteristics based on homogeneous hidden markov model. Journal of the Korean Society of Civil Engineers 34(1): 145-153 (in Korean). https://doi.org/10.12652/Ksce.2014.34.1.0145
  49. Yoon, S.K., J.P. Cho, and Y.I. Moon, 2014. Non-parametric low-flow frequency analysis using RCPs scenario data: a case study of the Gwangdong storage reservoir, Korea. Journal of the Korean Society of Civil Engineers 34(4): 1125-1138 (in Korean). https://doi.org/10.12652/Ksce.2014.34.4.1125