DOI QR코드

DOI QR Code

Analysis and Evaluation of Glycemic Indices and Glycemic Loads of Frequently Consumed Carbohydrate-Rich Snacks according to Variety and Cooking Method

탄수화물 간식류 식품 및 조리방법에 따른 혈당지수 및 혈당부하지수

  • Kim, Do Yeon (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Lee, Hansongyi (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Choi, Eun Young (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University) ;
  • Lim, Hyunjung (Department of Medical Nutrition, Graduate School of East-West Medical Science, Kyung Hee University)
  • 김도연 (경희대학교 동서의학대학원 의학영양학과) ;
  • 이한송이 (경희대학교 동서의학대학원 의학영양학과) ;
  • 최은영 (경희대학교 동서의학대학원 의학영양학과) ;
  • 임현정 (경희대학교 동서의학대학원 의학영양학과)
  • Received : 2014.09.18
  • Accepted : 2014.10.28
  • Published : 2015.01.31

Abstract

This study examined the glycemic indices (GIs) and glycemic loads of carbohydrate-rich snacks in Korea according to variety and cooking method. The most popular carbohydrate snacks (corn, potatoes, sweet potatoes, chestnuts, and red beans) from the Korean National Health and Nutrition Examination Survey nutrient database were cooked using a variety of conventional cooking methods (steaming, baking, porridge, puffing, and frying). The GIs of foods were measured in 60 healthy males after receiving permission from the University Hospital institutional review board (KMC IRB 1306-01). Blood glucose and insulin levels were then measured at 0, 15, 30, 60, 90, and 120 min after consuming glucose, and each test food contained 50 g of carbohydrates (corn: 170.0 g, potatoes: 359.7 g, sweet potatoes: 160.3 g, chestnuts: 134.8 g, red beans: 73.1 g). GI values for test foods were calculated based on the increase in the area under the blood glucose response curve for each subject. Steamed potatoes ($93.6{\pm}11.6$), corn porridge ($91.8{\pm}19.5$), baked sweet potatoes ($90.9{\pm}9.6$), baked potatoes ($78.2{\pm}14.5$), steamed corn ($73.4{\pm}9.9$), and steamed sweet potatoes ($70.8{\pm}6.1$) were shown to be considered high GI foods, whereas baked chestnuts ($54.3{\pm}6.3$), red bean porridge ($33.1{\pm}5.5$), steamed red beans ($22.1{\pm}3.2$), fried potatoes ($41.5{\pm}7.8$), and ground and pan-fried potatoes ($28.0{\pm}5.1$) were considered as low GI foods. The results suggest that the cooking method of carbohydrate-rich snacks is an important determinant of GI values.

한국인 다소비 탄수화물 간식류의 조리방법에 따른 혈당지수 및 혈당부하지수를 알아보기 위하여 건강한 성인에게 포도당과 탄수화물 간식을 조리방법을 달리하여 실험하였다. 당질부하량은 50 g 당질 함량으로 계산하였고, 식후 혈당과 혈청 인슐린 반응은 2시간에 걸쳐 측정하였다. 그 결과 옥수수죽, 찐옥수수, 찐감자, 군감자, 찐고구마, 군고구마는 고혈당지수에 해당하였고 강냉이, 고구마튀김, 군밤이 중 혈당지수에 해당되며, 감자튀김, 감자전, 군밤, 찐팥, 팥죽은 저혈당지수 수치에 해당하였다. 조리방법별로 비교했을 때 기름을 사용한 찐감자와 군감자의 혈당지수가 감자튀김과 감자전보다 높았고 군고구마의 혈당지수가 고구마튀김에 비해 높았으며, 찐팥의 혈당지수가 팥죽에 비해 낮았다. 식품별로 비교했을 때 찐 형태에서는 찐팥이 저 혈당지수, 찐밤이 중 혈당지수 간식에 해당하였고, 구운 형태로는 군밤이 저 혈당지수 식품에 속하였다. 죽 형태로는 팥죽이 저 혈당지수에 해당하였고, 튀긴 형태로는 감자전, 감자튀김 모두 저 혈당지수에 속하였지만 감자전만이 고구마튀김에 비해 낮았다. 혈당부하지수는 찐팥, 군밤, 찐밤, 팥죽, 군감자, 찐감자, 감자전, 감자튀김이 저 혈당부하지수, 고구마튀김, 강냉이, 찐옥수수가 중 혈당부하지수, 군고구마와 옥수수죽은 고 혈당부하지수 간식에 해당하였다. 결론적으로 현재 탄수화물 간식류에 대한 혈당지수는 외국의 데이터를 많이 이용하고 있고 국내에서의 연구는 미비한 실정이므로 우리나라에서 많이 섭취되고 있는 간식류를 대상으로 혈당지수 연구가 지속적으로 이루어져야 할 것으로 사료된다. 또한 기름을 사용하여 조리된 간식류는 혈당지수가 낮더라도 만성질환예방을 위해 적당량 섭취를 권고해야 할 것이다. 마지막으로 당뇨병의 식사요법에서 탄수화물 간식류는 무조건 제한하기보다는 적절한 조리방법으로 제시될 필요가 있으므로 본 연구에서 산출한 탄수화물 간식류의 혈당지수와 혈당부하 지수를 참고적인 자료로 이용할 수 있을 것으로 생각되며 향후 당뇨병 환자를 대상으로 한 탄수화물 간식류의 혈당지수 연구도 필요할 것으로 사료된다.

Keywords

References

  1. Korea Health Industry Development Institute. 2013. National Health Statistics 2012: Korea National Health and Nutrition Examination Survey (KNHANES V-3). KHIDI, Osong, Korea. p 44-495.
  2. The Korean Nutrition Society. 2010. Dietary reference intakes for Koreans. KNS, Seoul, Korea. p 6.
  3. Gilbertson HR, Thorburn AW, Brand-Miller JC, Chondros P, Werther GA. 2003. Effect of low-glycemic-index dietary advice on dietary quality and food choice in children with type 1 diabetes. Am J Clin Nutr 77: 83-90.
  4. Rye JH, Yim JE, Suk WH, Lee H, Ahn HJ, Kim YS, Park CS, Choue R. 2012. Sugar composition and glycemic indices of frequently consumed fruits in Korea. Korean J Nutr 45: 192-200. https://doi.org/10.4163/kjn.2012.45.2.192
  5. Jenkins DJ, Wolever TM, Taylor RH, Barker H, Fielden H, Baldwin JM, Bowling AC, Newman HC, Jenkins AL, Goff DV. 1981. Glycemic index of foods: a physiological basis for carbohydrate exchange. Am J Clin Nutr 34: 362-366.
  6. Atkinson FS, Foster-Powell K, Brand-Miller JC. 2008. International tables of glycemic index and glycemic load values: 2008. Diabetes Care 31: 2281-2283. https://doi.org/10.2337/dc08-1239
  7. Bjorck I, Granfeldt Y, Liljeberg H, Tovar J, Asp NG. 1994. Food properties affecting the digestion and absorption of carbohydrates. Am J Clin Nutr 59: 699S-705S.
  8. Kim IJ. 2009. Glycemic index revisited. Korean Diabetes J 33: 261-266. https://doi.org/10.4093/kdj.2009.33.4.261
  9. FAO. 1998. Carbohydrates in human nutrition: Report of a Joint FAO/WHO Expert Consultation. FAO Food Nutr Pap, Rome, Italy. Vol 66, p 1-140.
  10. Jenkins DJ, Wolever TM, Jenkins AL. 1988. Starchy foods and glycemic index. Diabetes Care 11: 149-159. https://doi.org/10.2337/diacare.11.2.149
  11. Lee JS, Lee JS, Yang CB, Shin HK. 1997. Blood glucose response to some cereals and determination of their glycemic index to rice as the standard food. Korean J Nutr 30: 1170-1179.
  12. Lee JS, Shin HK. 1998. Correlation between glycemic index and in vitro starch hydrolysis of cereals. Korean J Food Sci Technol 30: 1229-1235
  13. Kim JI, Kong BW, Jung SH, Park SJ, Kwon TW, Kim JC. 2002. Postprandial glucose and insulin responses to processed rice products in normal subjects. Nutraceuticals & Food 7: 174-178. https://doi.org/10.3746/jfn.2002.7.2.174
  14. Yoon SK, Kim MA. 1998. Glycemic responses of Korean domestic meals and diabetic meals in normal subjects. Korean J Food & Nutr 11: 303-311
  15. Foster-Powell K, Holt SH, Brand-Miller JC. 2002. International tables of glycemic index and glycemic load values: 2002. Am J Clin Nutr 76: 5-56.
  16. Brouns F, Bjorck I, Frayn KN, Gibbs AL, Lang V, Slama G, Wolever TM. 2005. Glycaemic index methodology. Nutr Res Rev 18: 145-171.
  17. Wolever TM, Jenkins DJ, Josse RG. 1991. The glycemic index: methodology and clinical implications. Am J Clin Nutr 54: 846-854.
  18. Behall KM, Scholfield DJ, Canary J. 1988. Effect of starch structure on glucose and insulin responses in adults. Am J Clin Nutr 47: 428-432.
  19. RDA. 2011. Food Composition Table. 8th ed. Rural Development Administration National Academy of Agricultural Science, Suwon, Korea. p 21-114.
  20. RDA. 2009. Food Composition and Nutrition Table. 1st ed. Rural Development Administration, Suwon, Korea. p 212-321.
  21. Im SS, Kim MH, Sung CJ, Lee JH. 1991. The effect of cooking form of rice and barley on thd postprandial serum glucose and insulin responses in normal subject. J Korean Soc Food Nutr 20: 293-299.
  22. Brand JC, Nicholson PL, Thorburn AW, Truswell AS. 1985. Food processing and the glycemic index. Am J Clin Nutr 42: 1192-1196.
  23. Bahado-Singh PS, Riley CK, Wheatley AO, Lowe HI. 2011. Relationship between processing method and the glycemic indices of ten sweet potato (Ipomoea batatas) cultivars commonly consumed in Jamaica. J Nutr Metab 2011: 584832.
  24. Yang YX, Wang HW, Cui HM, Wang Y, Yu LD, Xiang SX, Zhou SY. 2006. Glycemic index of cereals and tubers produced in China. World J Gastroenterology 12: 3430-3433. https://doi.org/10.3748/wjg.v12.i21.3430
  25. Lutsey PL, Steffen LM, Stevens J. 2008. Dietary intake and the development of the metabolic syndrome: the Atherosclerosis Risk in Communities study. Circulation 117: 754-761. https://doi.org/10.1161/CIRCULATIONAHA.107.716159
  26. Cui R, Oates C. 1999. The effect of amylose-lipid complex formation on enzyme susceptibility of sago starch. Food Chem 65: 417-425. https://doi.org/10.1016/S0308-8146(97)00174-X
  27. Holm J, Björck I, Ostrowska S, Eliasson AC, Asp NG, Larsson K, Lundquist I. 1983. Digestibility of amylose-lipid complexes in-vitro and in-vivo. Starch-Stake 35: 294-297. https://doi.org/10.1002/star.19830350902
  28. Sugiyama M, Tang AC, Wakaki Y, Koyama W. 2003. Glycemic index of single and mixed meal foods among common Japanese foods with white rice as a reference food. Eur J Clin Nutr 57: 743-752. https://doi.org/10.1038/sj.ejcn.1601606
  29. Schulze MB, Liu S, Rimm EB, Manson JE, Willett WC, Hu FB. 2004. Glycemic index, glycemic load, and dietary fiber intake and incidence of type 2 diabetes in younger and middle- aged women. Am J Clin Nutr 80: 348-356.
  30. Gaesser GA. 2007. Carbohydrate quantity and quality in relation to body mass index. J Am Diet Assoc 107: 1768-1780. https://doi.org/10.1016/j.jada.2007.07.011
  31. McKeown NM, Meigs JB, Liu S, Rogers G, Yoshida M, Saltzman E, Jacques PF. 2009. Dietary carbohydrates and cardiovascular disease risk factors in the Framingham offspring cohort. J Am Coll Nutr 28: 150-158. https://doi.org/10.1080/07315724.2009.10719766

Cited by

  1. Utility of the Glycemic Index in Practical Diabetes Management vol.16, pp.2, 2015, https://doi.org/10.4093/jkd.2015.16.2.135
  2. Effects of macronutrients in mixed meals on postprandial glycemic response vol.51, pp.1, 2018, https://doi.org/10.4163/jnh.2018.51.1.31
  3. Glycaemic indices and glycaemic loads of common Korean carbohydrate-rich foods vol.121, pp.04, 2019, https://doi.org/10.1017/S0007114518003446
  4. 젊은 성인의 영양정보이해력 평가도구 개발 및 타당성 검증 vol.53, pp.2, 2020, https://doi.org/10.4163/jnh.2020.53.2.175