DOI QR코드

DOI QR Code

Physicochemical Properties of Supremo Coffee according to Grinding and Brewing Conditions

분쇄도 및 로스팅 조건이 수프리모 커피의 이화학적 특성에 미치는 영향

  • Kang, Rhan-Kee (Department of Food Science & Nutrition, Hoseo University) ;
  • Min, Kwan-Sik (Graduate School of Future Convergence Technology, Hankyung National University) ;
  • Kang, Myung-Hwa (Department of Food Science & Nutrition, Hoseo University)
  • 강난기 (호서대학교 식품영양학과) ;
  • 민관식 (한경대학교 식품영양학과) ;
  • 강명화 (호서대학교 식품영양학과)
  • Received : 2014.09.19
  • Accepted : 2014.11.23
  • Published : 2015.01.31

Abstract

Supremo coffee was light and dark brewed and grinded using different beans sizes. We determined physicochemical properties of Supremo coffee in the form of moisture, crude fat, crude protein, and crude ash contents. Moisture content was higher in beans of the dark brew than the light brew. Carbohydrate content was lower in the dark brew. However, crude fat, crude protein, and crude ash contents were higher in the dark brew. pH level was higher in beans of the dark. L value (brightness) decreased in the dark brew. a value (red coloring) and b value (yellow coloring) were both increased in the light brew and decreased in the dark brew. Stronger brewing resulted in lower a and b values. The contents of Ca, Fe, K, Na, and P were measured, and the results showed that K content was the highest. Total dietary fiber content was significantly higher than all other brewing parameters. Soluble dietary fiber content was 4.25 g/100 g in the dark brew and week grinding while insoluble dietary fiber was 63.49 g/100 g in the light brew and week grinding, which was the highest. Fatty acid composition was not significantly different according to brewing and grinding conditions. Supremo coffee contained acetic acid, propionic acid, oxalic acid, citric acid, and fumaric acid. In particular, contents of acetic acid and fumaric acid were highest. These results suggest that physicochemical properties of Supremo coffee are affected by different brewing and grinding conditions.

배전도와 분쇄도를 달리하여 가공한 수프리모 커피 추출물의 일반성분, pH, 당도, 색도 및 미네랄 조성 등의 이화학적 특성을 분석하였다. 수분 함량은 약배전보다 강배전 시 감소하였고, 탄수화물은 강배전 후 감소하였다. 조단백질, 조지방, 조회분은 강배전 후 증가하였다. pH의 변화는 약배전보다 강배전 시 높아졌고, 당도와 총 당 함량은 배전강도에 따라 유의적인 차이를 나타내지 않았다. 밝기 정도를 나타내는 L값은 생두는 강배전할수록 낮아지고, 적색도를 나타내는 a값과 황색도를 나타내는 b값은 약배전에서 높고, 강배전에서 낮아졌다. 배전도가 클수록 L값, a값, b값은 낮아지고 분쇄도가 클수록 L값은 낮아졌으며, a, b 값은 배전도에 따라 유의한 차이가 있는 것으로 나타났다. 수프리모 커피의 Ca, Fe, K, Na, P 함량을 측정한 결과는 K 함량이 가장 높게 나타났다. 총 식이섬유 함량은 약배전 약분쇄 시 가장 높아 다른 배전 조건과 비교해 유의적으로 높았다. 수용성 식이섬유 함량은 강배전 약분쇄 4.25 g/100 g, 불용성 식이섬유소는 약배전 약분쇄 63.49 g/100 g으로 가장 높아 배전 조건에 따라 식이섬유소 함량이 유의적으로 다르게 나타났다. 수프리모 커피에 함유되어 있는 지방산 중에 특히 palmitic acid 및 linoleic acid의 함량이 다른 지방산에 비해 높게 측정되었다. 하지만 배전도와 분쇄도에 따른 지방산 조성에는 큰 차이를 나타내지 않았다. 배전도와 분쇄도를 달리한 수프리모 커피의 유기산은 acetic acid, propionic acid, oxalic acid, citric acid, fumaric acid가 검출되었다. 특히 수프리모 커피의 생두는 휘발성을 갖는 유기산인 acetic acid가 높았고, 배전강도와 분쇄도를 달리하여 가공 처리한 수프리모 커피는 fumaric acid의 함량이 높게 측정되었다. 본 연구 결과 커피 품종에 따라 배전도와 분쇄도를 달리하면 다양한 이화학적인 특성을 지닌 커피의 제조가 가능할 것으로 기대된다.

Keywords

References

  1. Clarke RJ. 1987. Packaging of roast and instant coffee. In Coffee: Volume 2-Technology. Clarke RJ, Macrae R, eds. Elsevier Science Publishers Ltd., Crown House, Linton Road, Barking, UK. p 201-215.
  2. Smith AW. 1985. Introduction. In Coffee, I: Chemistry. Clarke RJ, Macrae R, eds. Elsevier Applied Science Publishers Ltd., London, UK. p 1-41.
  3. Seo HS, Kang HJ, Jung EH, Hwang IK. 2006. Application of GC-SAW (Surface Acoustic Wave) electronic nose classification of origins and blended commercial brands in roasted ground coffee beans. Korean J Food Cookery Sci 22: 299-306.
  4. http://coffeeroastinghacks.com/colombian-supremo/ (accessed Jan 2014).
  5. Sivetz M. 1963. Aromatization-properties-brewing-decaffeination- plant design. In Coffee Processing Technology. Avi Publishing Company, Westport, CT, USA. Vol 2, p 21-28.
  6. Moon JW, Cho JS. 1999. Changes in flavor characteristics and shelf-life of roasted coffee in different packaging conditions during storage. Korean J Food Sci Technol 31: 441-447
  7. Clarke RJ. 1987. Roasting and grinding. In Coffee: Technology. Clarke RJ, Macrae R, eds. Elsevier Applied Science Publishers Ltd., London, UK. Vol 2, p 73-107.
  8. Reineccius GA. 1995. The maillard reaction and coffee flavor. Proceeding of the 16th International Scientific Colloquium on Coffee. ASIC, Paris, Francia. p 249-257.
  9. Perrone D, Farah A, Donangelo CM, de Paulis T, Martin PR. 2008. Comprehensive analysis of major and minor chlorogenic acids and lactones in economically relevant Brazilian coffee cultivars. Food Chem 106: 859-867. https://doi.org/10.1016/j.foodchem.2007.06.053
  10. Fujioka K, Shibamoto T. 2008. Chlorogenic acid and caffeine contents in various commercial brewed coffees. Food Chem 106: 217-221. https://doi.org/10.1016/j.foodchem.2007.05.091
  11. Macrae R. 1985. Nitrogenous compounds. In Coffee Chemistry. Clarke RJ, Macrae R, eds. Elsevier Applied Science Publishers, Barking, UK. p 115-152.
  12. Viani R, Horman I. 1974. Thermal behavior of trigonelline. J Food Sci 39: 1216-1217. https://doi.org/10.1111/j.1365-2621.1974.tb07357.x
  13. Acheson KJ, Gremaud G, Meirim I, Montigon F, Krebs Y, Fay LB, Gay LJ, Schneiter P, Schindler C, Tappy L. 2004. Metabolic effects of caffeine in humans: lipid oxidation or futile cycling? Am J Clin Nutr 79: 40-46.
  14. Greenberg JA, Boozer CN, Geliebter A. 2006. Coffee, diabetes, and weight control. Am J Clin Nutr 84: 682-693.
  15. Zheng G, Sayama K, Okubo T, Juneja LR, Oguni I. 2004. Anti-obesity effects of three major components of green tea, catechins, caffeine and theanine, in mice. In Vivo 18: 55-62.
  16. Abbott RD, Ross GW, White LR, Sanderson WT, Burchfiel CM, Kashon M, Sharp DS, Masaki KH, Curb JD, Petrovitch H. 2003. Environmental, life-style, and physical precursors of clinical Parkinson's disease: recent findings from the Honolulu-Asia Aging Study. J Neurol 250: III30-39.
  17. Heuser I. 2003. Prevention of dementias: state of the art. Dtsch Med Wochenschr 128: 421-422. https://doi.org/10.1055/s-2003-37547
  18. Lindsay J, Laurin D, Verreault R, Hebert R, Helliwell B, Hill GB, McDowell I. 2002. Risk factors for Alzheimer's disease: a prospective analysis from the Canadian Study of Health and Aging. Am J Epidemiol 156: 445-453. https://doi.org/10.1093/aje/kwf074
  19. Ascherio A, Chen H, Schwarzschild MA, Zhang SM, Colditz GA, Speizer FE. 2003. Caffeine, postmenopausal estrogen, and risk of Parkinson's disease. Neurology 60: 790-795. https://doi.org/10.1212/01.WNL.0000046523.05125.87
  20. Choi SY, Kim Y. 2010. Effects of green tea or coffee consumption on serum lipid profiles. J Korean Soc Food Sci Nutr 39: 1279-1285. https://doi.org/10.3746/jkfn.2010.39.9.1279
  21. AOAC. 1995. Official methods of analysis of AOAC International. 15th ed. Association of Official Analytical Chemists, Washington, DC, USA. p 69-90.
  22. Lee MJ, Kim SE, Kim JH, Lee SW, Yeum DM. 2013. A study of coffee bean characteristics and coffee flavors in relation to roasting. J Korean Soc Food Sci Nutr 42: 255-261 https://doi.org/10.3746/jkfn.2013.42.2.255
  23. Oliveria LS, Franca AS, Mendonca JCF, Barros-Junior MC. 2006. Proximate composition and fatty acids profile of green and roasted defective coffee beans. LWT-Food Sci Technol 39: 235-239. https://doi.org/10.1016/j.lwt.2005.01.011
  24. Yanagimoto K, Lee KG, Ochi H, Shibamoto T. 2002. Antioxidative activity of heterocyclic compounds found in coffee volatiles produced by maillard reaction. J Agric Food Chem 50: 5480-5484. https://doi.org/10.1021/jf025616h
  25. Chang SM, Lee JK, Kim YH, Kim OY, Han CH, Yoo SG. 2010. Want to know more coffee. Kwangmoonkwak, Seoul, Korea.
  26. Ko YS, Chung JS. 1986. Comparative studies on the fatty acids in the green and roasted coffee beans. J Korean Home Economics Assoc 24: 119-127.
  27. Folstar P. 1985. Lipids. In Coffee: Chemistry. Clarke RJ, Macrae R, eds. Elsevier Applied Science, London, UK. Vol 1, p 203-222.
  28. Nikolova-Damyanova B, Velikova R, Jham GN. 1998. Lipid classes, fatty acid composition and triacylglycerol molecular species in crude coffee beans harvested in Brazil. Food Res Int 31: 479-486. https://doi.org/10.1016/S0963-9969(99)00016-2
  29. Seo HS. 2001. Studies on physicochemical characteristics, sensory characteristics and antioxidant activities of coffee in relation to the roasting degree. MS Thesis. Seoul National University, Seoul, Korea.
  30. Kim SE, Kim JH, Lee SW, Lee MJ. 2013. A study of roasting conditions on benzo[a]pyrene content in coffee beans. J Korean Soc Food Sci Nutr 42: 134-138. https://doi.org/10.3746/jkfn.2013.42.1.134
  31. Gillies ME, Birkbeck JA. 1983. Tea and coffee as sources of some minerals in the New Zealand diet. Am J Clin Nutr 38: 936-942.
  32. Deibler KD, Acree TE, Lavin EH. 1998. Aroma analysis of coffee brew by gas chromatography-olfactometry. In Food Flavor: Formation, Analysis and Packaging Influences. Contis ET, To CT, Mussinan CJ, Parliament TH, Shahidi F, Spanier AM, eds. Elsevier Science B.V., Amsterdam, Netherlands. p 69-78.
  33. Molund VP. 1984. Inhibition of carcinogen induced biological responses with a coffee water-insoluble fraction and a model system melanoidins. PhD Dissertation. University of British Columbia, Vancouver, Canada.
  34. Diaz-Rubio ME, Saura-Calixto F. 2007. Dietary fiber in brewed coffee. J Agric Food Chem 55: 1999-2003. https://doi.org/10.1021/jf062839p
  35. Galli V, Barbas C. 2004. Capillary electrophoresis for the analysis of short-chain organic acids in coffee. J Chromatography A 1032: 299-304. https://doi.org/10.1016/j.chroma.2003.09.028
  36. Khan NA, Brown JB. 1953. The composition of coffee oil and its component fatty acids. J Am Oil Chem Soc 30: 606-609. https://doi.org/10.1007/BF02640975
  37. Carrera F, Leon-Camacho M, Pablos F, González AG. 1998. Authentication of green coffee varieties according to their sterolic profile. Anal Chim Acta 370: 131-139. https://doi.org/10.1016/S0003-2670(98)00303-1
  38. Ratnayake WM, Hollywood R, O'Grady E, Stavric B. 1993. Lipid content and composition of coffee brews prepared by different methods. Food Chem Toxicol 31: 263-269. https://doi.org/10.1016/0278-6915(93)90076-B
  39. Martin MX, Pablos F, González AG, Valdenebro MX, Leon-Camacho M. 2001. Fatty acid profiles as discriminant parameters for coffee varieties differentiation. Talanta 54: 291-297. https://doi.org/10.1016/S0039-9140(00)00647-0
  40. Murkovic M, Hillebrand A, Winkler J, Leitner E, Pfannhauser W. 1996. Variability of fatty acid content in pumpkin seeds (Cucurbita pepo L.). Z Lebensm Unters Forsch 203: 216-219. https://doi.org/10.1007/BF01192866

Cited by

  1. Sensory Quality Characteristics of Colombia Coffee under Various Processing and Roasting Conditions of Green Beans vol.27, pp.4, 2017, https://doi.org/10.17495/easdl.2017.8.27.4.365
  2. Physicochemical characteristics and antioxidant activities of green coffee bean extracted with different solvents vol.25, pp.7, 2018, https://doi.org/10.11002/kjfp.2018.25.7.786
  3. 로스팅 조건에 따른 엘살바도르산 Coffea arabica cv. Bourbon 커피의 이화학적 특성 vol.52, pp.3, 2015, https://doi.org/10.9721/kjfst.2020.52.3.212
  4. Microbial Changes and Quality Properties of Commercial Cold Brew Coffee by Cold Drip Method During Storage Period vol.24, pp.4, 2015, https://doi.org/10.13050/foodengprog.2020.24.4.269