DOI QR코드

DOI QR Code

A quality improvement scheme of magnified image using effectively the various curved surface characteristics of Image

영상의 다양한 곡면 특성을 효과적으로 활용한 확대 영상의 화질 개선 기법

  • Received : 2015.01.03
  • Accepted : 2015.01.26
  • Published : 2015.01.31

Abstract

In this paper, a quality improvement scheme is proposed for magnified image using the various curved surface characteristics of image. After testing horizontal and vertical directional surface characteristics of source image, interpolation value is calculated to have the surface characteristics such as simple convex surface, simple concave surface, and compound surface. The calculated interpolation value become the value of the interpolated pixel of magnified image. The calculated interpolation value is closer to the pixel value of real image. So, the quality of the magnified image is improved. The PSNR value of the magnified image using the proposed scheme is larger than the PSNR values of the magnified image using the existing techniques.

본 논문에서는 원본 영상에 존재하는 가로축 방향과 세로축 방향의 단순 볼록 곡면 혹은 단순 오목 곡면 특성을 정밀하게 조사한 후, 다양한 곡면의 특성을 효과적으로 활용하여 실제 영상의 픽셀 값에 더욱 근접한 보간 값을 구하고 이를 사용하여 확대 영상을 생성하는 확대 영상의 화질 개선 기법을 제안한다. 제안 기법의 절차에 따라 구해진 보간 값은 실제 영상에 존재하는 단순 볼록 곡면, 단순 오목 곡면, 복합 곡면상의 값을 갖게 되기 때문에 실제 영상에 더욱 근접한 확대 영상을 생성할 수 있어 확대 영상의 화질이 향상된다. 제안 기법을 적용하여 확대한 영상의 PSNR 값이 기존의 기법들을 적용하여 확대한 영상의 PSNR 값보다 큰 것을 확인하였다.

Keywords

References

  1. I. N. Bankman, "Handbook of Medical Imaging, Processing and Analysis," Academic Press, pp. 393-420, 2000.
  2. J. Shi, and S. E. Reichenbach, "Image Interpolation by Two-Dimensional Parametric Cubic Convolution," IEEE Trans. on Image Processing, vol. 15, no. 7, pp. 1857-1870, July 2006. https://doi.org/10.1109/TIP.2006.873429
  3. S. M. Guo, C. Y. Hsu, G. C. Shin, and C. W. Chen, " Fast Pixel-size-based Large-scale Enlargement and Reduction of Image: Adaptive Combination of Bilinear Interpolation and Discrete Cosine Ttransform," Journal of Electronic Imaging, Vol. 20, No. 3, August 2011.
  4. Y. C. Hu, W. L. Chen, and J. R. Zeng, "Adaptive Image Zooming based on Bilinear Interpolation and VQ Approximation," Communications in Computer and Information Science, Vol. 260, pp. 310-319, December 2011. https://doi.org/10.1007/978-3-642-27183-0_33
  5. K. B. Kim, "Panoramic Image Improvement using Forward Warping and Bilinear Interpolation Method," Journal of the Korea Institute of Information and Communication Engineering," Vol. 16. No. 10, pp. 2108-2112, Oct. 2012. https://doi.org/10.6109/jkiice.2012.16.10.2108
  6. H. M. Moon, and S. B. Pan, "The LDA-based Long Distance Face Recognition using Multiple Distance Face Image and Bilinear Interpolation," Journal of Korean Institute of Information Technology," Vol. 11, No. 3, pp. 95-101, March 2013.
  7. A. K. Jain, "Fundamentals of Digital Image Processing," Prentice Hall, 2005.
  8. Y. Bai, and H. Zhuang, "On the Comparison of Bilinear, Cubic Spline, and Fuzzy Interpolation Techniques for Robotic Position Measurements,"IEEE Transactions on Instrumentation and Measurement, Vol. 54, Issue 6, pp. 2281-2288, December 2005. https://doi.org/10.1109/TIM.2005.858563
  9. K. P. Hong, J. K. Wang, I. S. Reed, and W. S. Hsieh, "Image Data Compression using Cubic Convolution Spline Interpolation," IEEE Tran. Image Processing, Vol. 9, No. 11, pp. 1988-1995, Nov. 2000. https://doi.org/10.1109/83.877222
  10. J. W. Yoo, D. H. Park, and Y. Kim, "An Image Interpolation by Adaptive Parametric Cubic Convolution," Journal of The Korea Society of Computer and Information, Vol. 13, No. 6, pp. 163-171, Nov. 2008.
  11. X. Li, M. Orchard, "New edge-directed interpolation," IEEE Trans. Image Process, Vol. 10, No. 10, pp. 1521-1527, Oct. 2001. https://doi.org/10.1109/83.951537
  12. J. W. Hwang, and H. S. Lee, "Adaptive image interpolation based on local gradient features," IEEE Signal Processing Letters, Vol. 11, No. 3, pp.359-362, March 2004. https://doi.org/10.1109/LSP.2003.821718
  13. T. W. Chan, O. C. Au, T. S. Chong, and W. S. Chau, "An Adaptive interpolation using spatial varing filter," IEEE Int. Conf. Consumer Electron, pp. 109-110, June 2005.
  14. T. Mori, K. Kameyama, Y. Ohmiya, and J. Lee, "Image Resolution Conversion Based on an Edge-Adaptive Interpolation Kernel," IEEE Pacific Rim Conference, pp. 497-500, Aug. 2007.
  15. S. M. Jung and B. W. On, "An effective quality improvement scheme of magnified image using the surface characteristics in image," Journal of The Korea Society of Computer and Information, Vol. 19, No. 8, pp. 45-54, Aug. 2014. https://doi.org/10.9708/jksci.2014.19.8.045