DOI QR코드

DOI QR Code

Maximum Degree Vertex-Based Algorithm for Maximum Clique Problem

최대 클릭 문제에 관한 최대차수 정점 기반 알고리즘

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2014.12.15
  • Accepted : 2015.01.12
  • Published : 2015.01.31

Abstract

In this paper, I propose a linear time algorithm devised to produce exact solution to NP-complete maximum clique problem. The proposed algorithm firstly, from a given graph G=(V,E), sets vertex $v_i$ of the maximum degree ${\Delta}(G)$ as clique's major vertex. It then selects vertex $v_j$ of ${\Delta}(G)$ among vertices $N_G(v_i)$ that are adjacent to $v_i$, only to determine $N_G(v_i){\cap}N_G(v_j)$ as candidate cliques w and $v_k$. Next it obtains $w=w{\cap}N_G(v_k)$ by sorting $d_G(v_k)$ in the descending order. Lastly, the algorithm executes the same procedure on $G{\backslash}w$ graph to compare newly attained cliques to previously attained cliques so as to choose the lower. With this simple method, multiple independent cliques would also be attainable. When applied to various regular and irregular graphs, the algorithm proposed in this paper has obtained exact solutions to all the given graphs linear time O(n).

본 논문은 NP-완전으로 알려진 최대 클릭의 정확한 해를 선형시간으로 찾는 알고리즘을 제안하였다. 먼저, 주어진 그래프 G=(V,E)에서 최대 차수 ${\Delta}(G)$ 정점 $v_i$를 클릭의 대표 정점으로 결정한다. $v_i$ 인접 정점 $N_G(v_i)$에서 ${\Delta}(G)$ 정점 $v_j$를 선택하여 $N_G(v_i){\cap}N_G(v_j)$를 후보 클릭 w와 $v_k$로 결정한다. $d_G(v_k)$ 내림차순으로 $w=w{\cap}N_G(v_k)$를 얻는다. 마지막으로, $G{\backslash}w$그래프에서 동일한 절차를 수행하여 얻은 클릭이 기존에 얻은 클릭과 동일하거나 크면 이 클릭을 선정하는 검증과정을 거쳤다. 이와 같은 방법으로 독립된 다수의 클릭도 얻을 수 있는 장점이 있다. 제안된 알고리즘을 다양한 정규와 비정규 그래프에 적용한 결과 모든 그래프에 대해 선형시간 O(n)으로 정확한 해를 구하였다.

Keywords

References

  1. Wikipedia, "Clique (Graph Theory), http://en.wikipedia.org/wiki/Clique_(graph_theory), Wikimedia Foundation Inc., 2014.
  2. Wikipedia, "Karp's 21 NP-complete Problems, http://en.wikipedia.org/wiki/Karp's_21_NP-complete_problems, Wikimedia Foundation Inc., 2014.
  3. C. Umans, "CS21: Decidability and Tractability," Computer Science, California Institute of Technology, http://www.cs.caltech.edu/-umans/cs21/lec21.pdf, 2009.
  4. Q. Ouyang, P. D. Kaplan, S. Liu, and L. Shumao, "DNA Solution of the Maximal Clique Problem," Science Vol. 278, pp. 446-449, 1997. https://doi.org/10.1126/science.278.5337.446
  5. H. J. Kim. "Finding Clique Using Backtracking Algorithm," University of Washington, 2006.
  6. E. W. Weisstein, "Complete Graph," Mathworld, http://mathworld.wolfram.com/CompleteGraph.html, 2014.
  7. E. W. Weisstein, "Peterson Graph," Mathworld, http://mathworld.wolfram.com/PetersonGraph.html, 2014.
  8. A. Dharwadker, "The Clique Algorithm," http://www.geocities.com/dharwadker/clique, 2006.
  9. P. R. J. Ostergard, "A Fast Algorithm for the Maximum Clique Problem," Discrete Applied Mathematics, Vol. 120, No. 1-3, pp. 197-207, Aug. 2002. https://doi.org/10.1016/S0166-218X(01)00290-6
  10. W. Pullan and H. H. Hoos, "Dynamic Local Search for the Maximum Clique Problem," Journal of Artificial Intelligence Research, Vol. 25, No. 1, pp. 159-185, Jan. 2006.
  11. W. Pullan, "Phased Local Search for the Maximum Clique Problem," Journal of Combinatorial Optimization, Vol. 12, No. 3, pp. 303-323, Nov. 2006. https://doi.org/10.1007/s10878-006-9635-y
  12. W. Pullan, F. Mascia, and M. Brunato, "Cooperating Local Search for the Maximum Clique Problem," Journal of Heuristics, Vol. 17, No. 2, pp. 181-199, Apr. 2011. https://doi.org/10.1007/s10732-010-9131-5
  13. L. Xiangmei, D. Fei, and Z. Shao, "A Local Search Algorithm for the Maximum Clique Problem," Journal of Convergence Information Technology, Vol. 7, No. 14, pp. 65-70, Aug. 2012. https://doi.org/10.4156/jcit.vol7.issue14.8
  14. S. Balaji, "A New Effective Local Search Heuristic for the Maximum Clique Problem," World Academy of Science, Engineering and Technology, International Journal of Mathematical, Computational, Physical and Quantum Engineering, Vol. 7, No. 5, pp. 523-529, May 2013.
  15. Z. O. Akbari, "A Polynomial-Time Algorithm for the Maximum Clique Problem," IEEE/ACIS 12th International Conference on Computer and Information Science, pp. 503-507, Jun. 2013.
  16. J. Konc and D. Janezic, "An Improved Branch and Bound Algorithm for the Maximum Clique Problem," MATCH Communications in Mathematical and in Computer Chemistry, Vol. 58, No. 3, pp. 569-590, Dec. 2007.
  17. Wikipedia, "Degree (Graph Theory)," http://en.wikipedia.org/wiki/Degree_(graph-th eory), Wikimedia Foundation Inc., 2014.
  18. P. M. Pardalos, "ESI 6448 Discrete Optimization Theory: Cliques, Quasi-cliques and Clique Partitions in Graphs," Department of Industrial and Systems Engineering, University of Florida, 2008.
  19. Y. D. Lyuu, "Clique," Dept. of Computer Science & Information Engineering, National Taiwan University, 2004.
  20. Mukul S. Bansal and V. Ch. Venkaiah, "A Note on Finding a Maximum Clique in a Graph Using BDDs", Australasian Journal of Combinatorics, Vol. 32, No. 1, pp. 253-258, Jan. 2005.
  21. A. Dharwadker, "The Vertex Coloring Algorithm," http://www.geocities.com/dharwadker/vertex_coloring/, 2006.
  22. K. Xu, "Benchmarks with Hidden Optimum Solutions for Set Covering, Set Packing and Winner Determination," Computer Science, National Laboratory of Software Development Environment, Department of Computer Science and Engineering, Beijing University of Aeronautics and Astronautics, 2009.