DOI QR코드

DOI QR Code

Seismic Performance Evaluation of Medium-and Low-rise R/C Buildings Strengthened with RCSF External Connection Method by Pseudo Dynamic Test

유사동적실험에 의한 RCSF 외부접합공법으로 내진보강 된 중·저층 철근콘크리트 건물의 내진성능 평가

  • Received : 2014.08.12
  • Accepted : 2014.09.30
  • Published : 2015.01.30

Abstract

In this study, a new RCSF (Reinforced Concrete Steel Frame) external connection method is proposed for seismic strengthening of medium-and low-rise reinforced concrete buildings. The RCSF method, proposed in this study, is capable of carrying out the seismic retrofitting construction while residents can live inside structures. The method is one of the strength design approach by retrofit which can easily increase the ultimate lateral load capacity of concrete buildings controlled by shear. The pseudo-dynamic test, designed using a existing school building in Korea, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and ductility. Test results revealed that the proposed RCSF strengthening method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

본 연구에서는 기존 강도증진형 내진보강법의 단점을 보완 개선할 수 있는 새로운 개념의 내진보강법인 RCSF (Reinforced Concrete Steel Frame) 외부접합형 내진보강공법을 제안하였다. RCSF 보강법은 거주자가 거주가 가능하면서 내진보강 공사를 실시할 수가 있으며, 접합부 시공성이 탁월하며, 특히 필요 내진보강량 산정이 간편한 전형적인 강도증진형으로 전단파괴가 지배적인 비내진상세를 가지는 국내 중 저층 철근콘크리트 건물에는 내력확보가 용이한 내진보강공법이다. 본 연구에서 제안한 RCSF 외부접합형 공법의 유용성을 검증 할 목적으로 기존 중 저층 철근콘크리트 학교건물의 골조를 대상으로 유사동적실험을 실시하여 검증함과 동시에 내진보강효과를 검토하였다. 그 결과, 국내에서 발생 가능한 최대 지진규모 (300gal)에서 비보강 골조는 붕괴를 하였지만, RCSF 외부접합형 내진보강법으로 보강한 골조는 경미한 지진피해가 예상되었으며, 대규모 지진 (400, 500gal)을 상정한 경우에도 소규모 이하의 지진피해가 예상되어 본 연구에서 개발한 RCSF 내진보강법의 유효성이 검증되었다고 사료된다.

Keywords

References

  1. Federal Emergency Management Agency (FEMA) (1998), Prestandard, Washington D. C., 400.
  2. Hakuno et al. (1988), Hybrid Test Manual, Institute of Industrial Science, The University of Tokyo.
  3. Japan Building Disaster Prevention Association (JBDPA) (2001), Standard for Damage Level Classification, Tokyo, Japan, 250.
  4. Japan Building Disaster Prevention Association (JBDPA) (2003), Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings, Tokyo, Japan, 300.
  5. Korea Meteorological Administration (KMA) (2014), http://www.kma.go.kr/weather/earthquake/report.jsp.
  6. Lee, K. S., Choi, H., and Yi, W. H. (2002), Earthquake Damage Ratio Estimation and Seismic Capacity Evaluation of Existing Reinforced Concrete Buildings in Korea, Journal of Architectural Institute of Korea, 18(1), 11-20.
  7. Lee, K. S., Wi, J. D., Kim, Y. I., and Lee, H. H. (2009), Seismic Safety Evaluation of Korean R/C School Buildings Built in the 1980s, Journal of the Korea Institute for Structural Maintenance and Inspection, 13(5), 1-11.
  8. Maeda, M., Nakano, Y., Lee, K. S. (2004), Post-Earthquake Damage Evaluation for R/C Buildings Based on Residual Seismci Capacity, 13th World Conference on Earthquake Engineering, Vancouver, Canada, 1179.
  9. Ministry of Eduaction (MOE) and Korea Institute of Educational Environment (KIEE) (2011), Guideline for Seismic Evaluation and Rehabilitation of Existing School Buildings in Korea, 108
  10. MTS (1999), Pseudo-dynamic Testing For 793 Controllers, MTS Systems Corporation, 34.
  11. Shibata, A. (2003), New Structural Analysis for Seismic Design, Morikita Press, Tokyo, Japan, 250.