DOI QR코드

DOI QR Code

Seismic Performance Evaluation of R/C Frame Apartment Strengthened with Kagome Truss Damper External Connection Method by Pseudo Dynamic Test

유사동적실험에 의한 외부접합형 카고메 트러스 제진장치가 설치된 RC 라멘조 공동주택의 내진성능 평가

  • Received : 2014.12.03
  • Accepted : 2014.12.22
  • Published : 2015.01.30

Abstract

Recently a new damper system with Kogome truss structure was developed and its mechanical properties were verified based on the laboratory test. This paper presents a Kagome truss damper external connection method for seismic strengthening of RC frame structural system. The Kagome external connection method, proposed in this study, consisted of building structure, Kagome damper and support system. The method is capable of reducing earthquake energy on the basis of the dynamic interaction between external support and building structures using Kagome damper. The pseudo-dynamic test, designed using a existing RC frame apartment for pilot application of LH corporation, was carried out in order to verify the seismic strengthening effects of the proposed method in terms of the maximum load carrying capacity and response ductility. Test results revealed that the proposed Kagome damper method installed in RC frame enhanced conspicuously the strength and displacement capacities, and the method can resist markedly under the large scaled earthquake intensity level.

최근 새로운 3차원 와이어 다공질 형태의 카고메 트러스 이력형 제진장치가 개발되어, 건축물의 내진성능 개선을 위한 제진장치로서의 적용가능성이 재료실험을 통하여 검증되었다. 본 연구에서는 카고메 트러스 이력형 제진장치를 RC 라멘조 공동주택에 외부접합 한 새로운제진구조시스템을 제안하였다. 카고메 외부접합형 제진구조시스템은 대상건물, 카고메 제진장치, 지지구조물로 구성되어 있으며, 기존 층간에 설치된 제진시스템과 달리 외부 지지 구조물과 대상 건축물의 상호작용을 이용하여 제진장치가 지진 에너지를 흡수하는 시스템이다. 본 연구에서 제안한 카고메 외부접합형 제진공법의 유효성을 검증 할 목적으로 LH공사 시범적용용 RC 라멘조 20층 공동주택의 골조를 대상으로 유사동적실험을 실시하여 내진성능 개선효과를 검토하였다. 그 결과, 국내에서 발생 가능한 지진규모 (200gal)에서 비보강 골조는 중규모의 지진피해가 예상되었지만, 카고메 외부접합형 제진보강법으로 보강한 골조는 경미한 지진피해가 예상되었으며, 대규모 지진(300gal)을 상정한 경우에도 중규모 이하의 지진피해가 예상되어 본 연구에서 개발한 카고메 제진보강법의 내진성능 개선 효과의 유효성이 검증되었다고 사료된다.

Keywords

References

  1. American Society of Civil Engineers (ASCE) (2010), Minimum Design Loads for Builkdings and Other Structures, 187-199.
  2. Architectural Institute of Korea (AIK) (2008), Test Guideline for Architectural Engineering, Kimoondang Press, 1-881.
  3. Federal Emergency Management Agency (FEMA) (1998), FEMA 310 : Handbook for Seismic Evaluation of Buildings- A Prestandard, Washington D.C., 1-400.
  4. Hakuno et al. (1988), Hybrid Test Manual, Institute of Industrial Science, The University of Tokyo, 1-50.
  5. HNG. Wadley, NA Fleck, AG. Evans (2003), Composite Sci. Technol., 63, 2331-2343. https://doi.org/10.1016/S0266-3538(03)00266-5
  6. Hwang, J. S., Park, S. C., and Kang, K. J. (2013), A study on the hysteresis properties and mathematical model of Kagome truss damper, Journal of Architectural Institute of Korea, 29(9), 21-29 (in Korean, with English abstract).
  7. Japan Building Disaster Prevention Association (JBDPA) (2001), Standard for Damage Level Classification, Tokyo, Japan, 1-250.
  8. Japan Building Disaster Prevention Association (JBDPA) (2003), Standard for Evaluation of Seismic Capacity of Existing Reinforced Concrete Buildings, Tokyo, Japan, 1-300.
  9. Maeda, M., Nakano, Y., and Lee, K. S. (2004), Post-Earthquake Damage Evaluation for R/C Buildings Based on Residual Seismci Capacity, 13th World Conference on Earthquake Engineering (Vancouver, B.C., Canada), 1179.
  10. MTS (1999), Pseudodynamic Testing For 793 Controllers, MTS Systems Corporation, 1-34.
  11. Shibata A. (2003), New Structural Analysis for Seismic Design, Morikita Press, Tokyo, Japan, 1-250.