SUFFICIENT CONDITION FOR THE EXISTENCE OF THREE DISJOINT THETA GRAPHS

YUNSHU GAO AND DING MA

Abstract. A theta graph is the union of three internally disjoint paths that have the same two distinct end vertices. We show that every graph of order \(n \geq 12 \) and size at least \(\left\lfloor \frac{11n - 18}{2} \right\rfloor \) contains three disjoint theta graphs. As a corollary, every graph of order \(n \geq 12 \) and size at least \(\left\lfloor \frac{11n - 18}{2} \right\rfloor \) contains three disjoint cycles of even length.

1. Terminology and Introduction

In this paper, we only consider finite undirected graphs, without loops or multiple edges. We use [1] for the notation and terminology not defined here. A theta graph is the union of three internally disjoint paths that have the same two distinct end vertices. Let \(n \) be a positive integer, let \(K_n \) denote the complete graph of order \(n \) and \(K_n^{-4} \) be the graph obtained by removing exactly one edge from \(K_4 \). For a graph \(G \), we denote its vertex set, edge set, minimum degree by \(V(G) \), \(E(G) \) and \(\delta(G) \), respectively. The order and size of a graph \(G \), are defined by \(|V(G)| \) and \(|E(G)| \), respectively. A set of subgraphs is said to be vertex-disjoint or independent, if no two of them have any common vertex in \(G \), and we use disjoint to stand for vertex-disjoint throughout this paper. If \(u \) is a vertex of \(G \) and \(H \) is either a subgraph of \(G \) or a subset of \(V(G) \), we define \(N_H(u) \) to be the set of neighbors of \(u \) contained in \(H \), and \(d_H(u) = |N_H(u)| \). For a subset \(U \) of \(V(G) \), \(G[U] \) denotes the subgraph of \(G \) induced by \(U \). In particular, we often use \([U]\) to stand for \(G[U] \). If \(S \) is a set of subgraphs of \(G \), we write \(G \supseteq S \) it means that \(S \) is isomorphic to a subgraph of \(G \), in particular, we use \(mS \) to represent a set of \(m \) vertex-disjoint copies of \(S \). When \(S = \{x_1, x_2, \ldots, x_t\} \), we may also use \([x_1, x_2, \ldots, x_t]\) to denote \([\{x_1, x_2, \ldots, x_t\}]. \) Let \(V_1, V_2 \) be two disjoint subsets or subgraphs of \(G \), we use \(E(V_1, V_2) \) to denote the set of edges in \(G \) with one end-vertex in \(V_1 \), while the other in \(V_2 \). For simplicity, let \(E(x, V_2) \) stand for \(E(\{x\}, V_2) \), \(E(V_1, x) \)
for $E(V_1, \{x\})$, respectively. A path of order n is denoted by P_n. Throughout this paper, we consider that any cycle has a fixed orientation. Let C be a cycle of G. For $x, y \in V(C)$, we denote by $\overrightarrow{C}[x, y]$ the path from x to y on \overrightarrow{C}. A vertex u is called a leaf of G if $d_G(u) = 1$.

Corrádi and Hajnal [3] proved the following well-known result on the existence of vertex-disjoint cycles in graphs.

Theorem 1.1 ([3]). Let k be a positive integer and G be a graph with order $n \geq 3k$. If $\delta(G) \geq 2k$, then G contains k disjoint cycles.

Later, Wang [10] and independently Enomoto [5] proved a result stronger than Theorem 1.1 as follows.

Theorem 1.2 ([10]). Let k be a positive integer and G be a graph with order $n \geq 3k$. Suppose for any pair of nonadjacent u and v in G, $d_G(u) + d_G(v) \geq 4k - 1$, then G contains k disjoint cycles.

Given a cycle C of a graph G, a chord of C is an edge of $G - E(C)$ which joins two vertices of C. A cycle is called a chorded cycle if it has at least one chord. A theta graph is the union of three internally disjoint paths that have the same two distinct end vertices. A chorded cycle is a simple example of a theta graph but, in general a theta graph need not be a chorded cycle. It is obvious that K^-_4 is the theta graph with minimum order and every theta graph contains a cycle of even length. Pósa [9] proved that any graph with minimum degree at least three contains a chorded cycle. Motivated by these results, Finkel et al. [6] and Chiba et al. [3] obtained the following results analogous to Theorem 1.2, respectively.

Theorem 1.3 ([6]). If G is a graph of order $n \geq 4k$ and $\delta(G) \geq 3k$, then G contains k disjoint chorded cycles.

Theorem 1.4 ([3]). Let r, s be two nonnegative integers and let G be a graph with order $n \geq 3r + 4s$. Suppose for any pair of nonadjacent u and v in G, $d_G(u) + d_G(v) \geq 4r + 6s - 1$, then G contains $r + s$ disjoint cycles such that s of them are chorded cycles.

Kawarabayashi [8] considered the minimum degree to ensure the existence of disjoint copies of K^-_4 in a general graph G, which can be seen as a specified version of disjoint chorded cycles.

Theorem 1.5 ([8]). Let k be a positive integer and G be a graph with order $n \geq 4k$. If $\delta(G) \geq \lceil \frac{n + k}{2} \rceil$, then G contains k disjoint copies of K^-_4.

In this paper, we determine the edge number for a graph to contain three disjoint theta graphs. Our research is motivated by the conjecture put forward by Gao and Ji [7].
Conjecture 1.6 ([7]). Let \(k \geq 2 \) be an integer. Every graph of order \(n \) and size at least \(f(n, k) + 1 \) contains \(k \) disjoint theta graphs, when

\[
f(n, k) = \max \left\{ \left(\binom{4k-1}{2} - 3(n-4k+1) \right), \left(\frac{2(k-1)(2k-1) + (4k-1)(n-2k+1)}{2} \right) \right\}.
\]

If the conjecture is true, then the bound on size is best possible, which can be seen as following examples in [7]: Let \(G_1 \) be \(K_{4k-2} \cup \frac{n-4k+1}{2} K_2 \). The order of \(G_1 \) is \(n \) and size \(\binom{4k-1}{2} + \frac{2}{3}(n-4k+1) \), but \(G_1 \) does not contain \(k \) disjoint theta graphs. Also, let \(n \) be an integer such that \(n - (2k-1) \) is even. Let \(l_1 = \frac{n - (2k-1)}{2} \), \(F = K_{2k-1} \), \(H_1 = l_1 K_2 \) and \(G_2 = F + H_1 \). It is obvious that \(G_2 \) has order \(n \), \(|E(G_1)| = (k-1)(2k-1) + (4k-1)l_1 = (k-1)(2k-1) + \frac{(4k-1)(n-2k+1)}{2} = \left[\frac{2(k-1)(2k-1) + (4k-1)(n-2k+1)}{2} \right] \). Gao and Ji [7] verified Conjecture 1.6 for the case \(k = 2 \).

Theorem 1.7 ([7]). Every graph of order \(n \geq 8 \) and size at least \(f(n) \) contains two disjoint theta graphs, if

\[
f(n) = \begin{cases}
23 & \text{if } n = 8 \\
\left\lceil \frac{7n-14}{2} \right\rceil & \text{if } n \geq 9.
\end{cases}
\]

Based on Theorem 1.7, in this paper, we give a sufficient condition for the existence of three disjoint theta graphs.

Theorem 1.8. Every graph of order \(n \geq 12 \) and size at least \(\left\lceil \frac{11n-18}{2} \right\rceil \) contains three disjoint theta graphs.

Note that there is a small gap on the lower bound of size between Theorem 1.8 and Conjecture 1.6 for \(k = 3 \). However, the following corollary follows from Theorem 1.8.

Corollary 1.9. Every graph of order \(n \geq 12 \) and size at least \(\left\lceil \frac{11n-18}{2} \right\rceil \) contains three disjoint cycles of even length.

2. Basic lemma

Lemma 2.1. Let \(G \) be a graph of order 12 and size at least 57. Then \(G \) contains three disjoint copies of \(K_4^- \).

Proof. Suppose that \(G \) does not contain three disjoint copies of \(K_4^- \). If \(\delta(G) \geq 8 \), then by Theorem 1.5, \(G \supseteq 3K_4^- \), a contradiction. Hence, we may assume that \(\delta(G) \leq 7 \). Let \(v_0 \in V(G) \) such that \(d_G(v_0) = \delta(G) \). Suppose that \(d_G(v_0) = 1 \), then 56 = \(|E(G)| < 57 \), a contradiction. Thus, \(d_G(v_0) \geq 2 \) and let \(v_1, v_2 \in N_G(v_0) \). Suppose that \(d_G(v_0) = 2 \), then choose \(w \in V(G - \{v_0, v_1, v_2\}) \), since \(|E(G - \{v_0\})| \geq 55 \), it is obvious that \(\{v_0, v_1, v_2, w\} \supseteq K_4^- \) and \(|E(G - \{v_0, v_1, v_2, w\})| \supseteq 2K_4^- \), a contradiction. Hence, we may assume that \(d_G(v_0) \geq 3 \). Furthermore, since \(G - \{v_0\} \) can be obtained from \(K_{11} \) by removing at most five edges, it follows that \([N_G(v_0)]\) contains a path of order three, denoted by \(P_3 \). That is, \(P_3 + \{v_0\} \) contains a subgraph \(Q \cong K_4^- \). Note
that $|E(G - V(Q) - \{v_0\})| \geq 57 - 7 - (10 + 9 + 8) = 23$, by Theorem 1.7, $G - V(Q) - \{v_0\}$ contains two disjoint copies of K_4^-, which disjoints from Q, this implies that $G \supseteq 3K_4^-$, a contradiction. This proves Lemma 2.1.

\[\square \]

3. Proof of Theorem 1.8

If $n = 12$, then Lemma 2.1 gives us the required conclusion. Hence, it is sufficient to prove that every graph of order $n \geq 13$ and size at least $\lceil \frac{11n - 18}{2} \rceil$ contains three disjoint theta graph. We employ induction on n.

Assume that for all integers k with $12 \leq k < n$, every graph of order k and size at least $\lceil \frac{11k - 18}{2} \rceil$ contains three disjoint theta graphs. In the following proof, we always let G be any graph of order n and size at least $\lceil \frac{11n - 18}{2} \rceil$. By way of contradiction, we suppose that

\[(1) \quad G \text{ does not contain three disjoint theta graphs.} \]

Claim 3.1. $6 \leq \delta(G) \leq 8$.

Proof. By Theorem 1.3, we have $\delta(G) \leq 8$. Suppose that $\delta(G) \leq 5$ and let $v_0 \in V(G)$ such that $d_G(v_0) = \delta(G)$. The graph $G - v_0$ is of order $n - 1$ and size $\lceil \frac{11n - 18}{2} \rceil - d_G(v_0) \geq \lceil \frac{11n - 18}{2} \rceil - 5 \geq \frac{11n - 19 - 10}{2} = \frac{11(n - 1) - 18}{2} \geq \left\lceil \frac{11(n - 1) - 18}{2} \right\rceil$,

by induction hypothesis, $G - v_0$ contains three disjoint theta graphs, and so does G, which contradicts (1). Therefore, $\delta(G) \geq 6$. \[\square \]

Let v_0 be a vertex in G such that $d_G(v_0) = \delta(G)$. In what following, we always assume that $N_G(v_0) = \{v_1, \ldots, v_l\}$ and $H = [v_1, \ldots, v_l]$, where $l = d_G(v_0)$. By Claim 3.1, $6 \leq l \leq 8$. If $l = 6$, then let $\varepsilon_1 = 1$; if $l = 7$, then let $\varepsilon_1 = 2$; if $l = 8$, then let $\varepsilon_1 = 3$. Note that $l = 5 + \varepsilon_1$.

Claim 3.2. For each $1 \leq i \leq l$, $d_H(v_i) \geq l - \varepsilon_i$.

Proof. Suppose that there exists $1 \leq i \leq l$ such that $d_H(v_i) \leq l - \varepsilon_i - 1 = (l - 1) - \varepsilon_i$. Without loss of generality, we may assume that $i = l$, and we may also assume that $v_jv_l \notin E(G)$ for each $1 \leq j \leq \varepsilon_l$ (otherwise, we can relabel the index of $V(H)$). Define the edge set $X = \{v_jv_l : 1 \leq j \leq \varepsilon_l\}$ and construct the graph $G' = (G - v_0) + X$, which is a graph with order $n - 1$ and size $\lceil \frac{11n - 18}{2} \rceil - l + \varepsilon_l \geq \frac{11n - 19}{2} - l + \varepsilon_l = \frac{11(n - 1) - 18}{2} \geq \left\lceil \frac{11(n - 1) - 18}{2} \right\rceil$, because of $l = 5 + \varepsilon_1$. By induction hypothesis, G' contains three disjoint theta graphs, say T_1, T_2 and T_3, respectively. Clearly, at least two of them, say T_1 and T_2, do not contain vertex v_l, since T_1, T_2 and T_3 are disjoint theta graphs, then $E(T_1) \cap X = \emptyset$, $E(T_2) \cap X = \emptyset$ and by (1), $E(T_3) \cap X = \emptyset$.

Suppose that $|E(T_3) \cap X| = 1$, we may assume that $E(T_3) \cap X = \{v_lv_l\}$. Then $T_3' = (T_3 - \{v_lv_l\}) + \{v_1v_0, v_lv_l\}$ is a theta graph in G, T_1, T_2 and T_3' are disjoint in G, which contradicts (1). Therefore, it remains the case
\[E(T_3) \cap X = \{v_1v_1, v_2v_1\} \text{ or } E(T_3) \cap X = \{v_1v_1, v_2v_1, v_3v_1\}, \text{ as } \varepsilon_1 \leq 3. \]

Let

\[
T' = \begin{cases}
(T_3 - \{v_1v_1, v_2v_1\}) + \{v_0v_1, v_0v_2\}, & \text{if } d_{T_3}(v_1) = 2 \\
(T_3 - \{v_1v_1, v_2v_1\}) + \{v_0v_1, v_0v_2, v_0v_3\}, & \text{if } d_{T_3}(v_1) = 3 \text{ and } E(T_3) \cap X = \{v_1v_1, v_2v_1\} \\
(T_3 - \{v_1v_1, v_2v_1\}) + \{v_0v_1, v_0v_2, v_0v_3\}, & \text{otherwise.}
\end{cases}
\]

It is obvious that \(T_1, T_2\) and \(T'_3\) are three disjoint theta graphs in \(G\), which
contradicts (1). \(\Box\)

By Claim 3.2, Theorem 1.5 and the definition of \(\varepsilon_l\), when \(7 \leq l \leq 8\), for each subset \(S\) of \(V(H)\) with \(|S| \geq 7\), we obtain

\[[\{v_0\} \cup S] \geq 2K_4^- \quad \text{(2)} \]

In particular, if \(l = 6\), then

\[[\{v_0\} \cup V(H)] \cong K_7. \quad \text{(3)} \]

We take a vertex \(v \in V(G - H - \{v_0\})\) such that \(|E(v, V(H))|\) is maximum. When \(l = 6\), by (3) and the definition of \(v\), denote \(W = V(H) \cup \{v\}\), we claim that

\[[\{v_0\} \cup W] \geq 2K_4^- \quad \text{(4)} \]

Proof. By way of contradiction, suppose that \([\{v_0\} \cup W]\) does not contain two disjoint \(K_4^-\). By (3) and the assumption that \([\{v_0\} \cup W] \not\geq 2K_4^-\), for each \(w \in V(G - \{v_0\} - V(H))\), there is at most one edge between \(w\) and \(V(H)\). If \(n = 13\), then \(62 \leq |E(G)| \leq \frac{2 \times 6}{2} + 6 + \frac{6 \times 6}{2} = 42\), a contradiction. If \(n = 14\), then \(68 \leq |E(G)| \leq \frac{2 \times 6}{2} + 7 + \frac{7 \times 6}{2} = 49\), a contradiction. If \(n = 15\), then \(73 \leq |E(G)| \leq \frac{2 \times 6}{2} + 8 + \frac{8 \times 5}{2} = 57\), a contradiction. If \(n = 16\), then \(84 \leq |E(G)| \leq \frac{2 \times 6}{2} + 9 + \frac{9 \times 7}{2} = 66\), a contradiction. Therefore, we see that \(n \geq 17\).

Since

\[
|E(G - \{v_0\} - V(H))| \geq |E(G)| - \frac{7 \times 6}{2} - (n - 7) \\
\geq \frac{11n - 19}{2} - n - 14 \\
\geq \frac{7n - 13}{2},
\]

by Theorem 1.7, \(G - \{v_0\} - V(H)\) contains two disjoint theta graphs, together with (3), \(G\) contains three disjoint theta graphs, a contradiction. \(\Box\)

Let

\[
G^* = \begin{cases}
G - \{v_0\} \cup V(H), & \text{if } 7 \leq l \leq 8 \\
G - \{v_0, v\} \cup V(H), & \text{if } l = 6.
\end{cases}
\]

Let \(F^*\) be the set of components of \(G^*\). By (2) and (4), it follows from (1) that every graph in \(F^*\) contains no theta graph. In the following proof, let \(F\) denote arbitrary component in \(F^*\), then, each block of \(F\) is either a \(K_2\) or a cycle.
Claim 3.3. Let \(F \in F^* \) with \(|V(F)| \geq 4 \). Then each end block of \(F \) is isomorphic to \(K_2 \).

Proof. Otherwise, suppose that there exists an end block \(B \) of \(F \), such that \(B \) is a cycle. Let \(C \) denote the set of cut vertices of \(F \). Let \(u_1 \) and \(u_2 \) be two distinct vertices in \(V(B) - C \). Next, we choose two distinct vertices \(u_3 \) and \(u_4 \) (both are distinct with \(u_1 \) and \(u_2 \)) as follows: If \(F = B \), then let \(\{u_3, u_4\} \subseteq V(F - \{u_1, u_2\}) \); otherwise, \(F \) contains another end blocks \(B' \) which is different from \(B \), let \(u_3 \in V(B') \) such that \(u_3 \notin C \) and choose \(u_4 \in V(F) \setminus C \) if possible, unless \(F \) contains exactly two end blocks \(B \) and \(B' \), such that \(B \) is a triangle and \(B' \cong K_2 \). For each \(i \) with \(1 \leq i \leq 3 \), since \(d_F(u_i) \leq 2 \), if \(7 \leq l \leq 8 \), then \(|E(u_i, V(H))| \geq \delta(G) - 2 = l - 2 \); if \(l = 6 \), then \(|E(u_i, V(H)) \cup \{v_i\}| \geq l - 2 \). This implies that there exists a vertex \(v' \in V(H) \setminus \{u_i\} \). As \(B \) is a cycle, it is easy to see that \([B \cup \{v'\}] \) contains a theta graph. When \(F = B \), without loss of generality, we may assume that \(u_1, u_2, u_3 \) and \(u_4 \) occur along the direction of \(B \).

If \(l = 8 \), by applying (2) and Theorem 1.5, \(\{v_0 \cup V(H) - \{v'\}\} \) contains two theta graphs, that is, \(G \) contains three disjoint theta graphs, which contradicts (1). If \(l = 7 \), we may assume that \(\{v_2, v_3, v_4, v_5, v_6\} \subseteq N_G(u_3) \) and \(v' \neq v_4, v_5 \) and \(v_6 \), then \(|\{v_4, v_5, v_6, u_3\}| \geq K_4 \) by Claim 3.2. If \(u_3 \notin V(B) \), that is, \(u_3 \), belongs to another end block by our choice, notice that \(|V(H - \{v_4, v_5, v_6, u_3\}) \cup \{v_0\}| \geq K_4 \) and \(|B \cup \{v'\}| \) contains a theta graph, we obtain a contradiction to (1). Therefore, we see that \(u_3 \in V(B) \) and \(F = B \) by our choice. We may assume that \(\{v_1, v_2, v_3\} \subseteq N_G(u_1) \cap N_G(u_2) \) because we don’t use the assumption of \(\{v_2, v_3, v_4, v_5, v_6\} \subseteq N_G(u_3) \). Suppose for the moment, there exists at most one \(v_1 \in \{v_1, v_2, v_3\} \), such that \(v_1 \cup \{v_1, v_2, v_3\} \subseteq E(G) \). Then there exist \(v_p, v_q \in V(H - \{v_1, v_2, v_3\}) \) with \(p \neq q \), such that \(\{v_p, v_q\} \subseteq N_G(v_2) \cap N_G(u_4) \). However, by Claim 3.2, \(\{v_0 \cup V(H - \{v_1, v_2, v_p, v_q\}) \supseteq K_4 \), notice that \(\{\{v_0 \cup V(H - \{v_1, v_2\}) \cup \{v_p, v_q\} \cup V(H - \{u_3, u_4\}) \) contain two disjoint theta graphs, this implies that \(G \) contains three disjoint theta graphs, a contradiction. Thus, without loss of generality, say \(\{v_1, v_2\} \subseteq N_H(u_3) \cap N_H(u_4) \). As \(|E(u_3, V(H))| \geq 5 \), without loss of generality, we may assume that \(v_1, v_2, v_3, v_4, v_5 \in E(G) \). This implies that \(\{v_1, v_2, u_3\} \supseteq K_4 \), notice that \(\{v_0, v_5, v_6, v_7\} \supseteq K_4 \) and \(\{v_2, v_3\} \cup V(H - \{u_1, u_2\}) \) contains a theta graph, then \(G \) contains three disjoint theta graphs, a contradiction. Now, it remains the case \(l = 6 \). As \(d_F(u_i) \leq 2 \) for \(i \in \{1, 2, 3\} \), so \(|E(u_i, V(H) \cup \{v\}| \geq l - 2 = 4 \). Furthermore, by our choice of \(u_4 \), \(d_F(u_4) \leq 3 \) and \(|E(u_4, V(H) \cup \{v\})| \geq 3 \).

Suppose for the moment that \(u_3, u_2, v_3, v \in E(G) \), then \(\{B \cup \{v\}\} \) contains a theta graph. If \(u_3 \notin V(B) \), by the choice of \(u_3 \) and (3), \(H + \{v_0, u_4\} \supseteq 2K_4 \), this implies that \(G \) contains three disjoint theta graphs, which contradicts (1). Thus, \(u_3 \in V(B) \) and so \(F = B \). However, \(\{v\} \cup V(H - \{u_3\}) \) contains a theta graph and \(\{u_4, v_0\} \cup V(H) \supseteq 2K_4 \), a contradiction. Thus, there exists
i ∈ \{1, 2, 3\}, such that \(u, v \notin E(G) \). By the definition of \(v, |E(v, V(H))| \geq 4 \).

Without loss of generality, we assume that \(\{v_1, v_2, v_3, v_4\} \subseteq N_H(v) \).

If \(u_1v, u_2v \in E(G) \), then \(F = B \). Without loss of generality, we may assume that \(v_4u_1 \in E(G) \) and so \(\{v, v_4\} \cup V(\bar{B}[u_1, u_2]) \) contains a theta graph. Notice that \(u_3v \notin E(G) \) and \(u_4v \notin E(G) \), then \(\{v_3, u_4, v_0\} \cup V(H - \{v_4\}) \supseteq 2K_4^{+} \), a contradiction. Therefore, we assume that \(u_1v \notin E(G) \) by symmetry.

Suppose that \(u_3 \notin V(B) \). Then \(|E(u_1,\{v_1, v_2, v_3, v_4\})| \geq 2 \); otherwise, \(u_3v \notin E(G) \) and \(u_4v \notin E(G) \). By pigeonhole principle, there exists \(\{v_p, v_q\} \subseteq V(H) \) such that \(\{v_p, v_q\} \subseteq N_H(u_1) \cap N_H(u_2) \). If \(u_3v_p \in E(G) \), then \(V(\bar{B}[u_1, u_3]) \cup \{v_p\} \) contains a theta graph, notice that \(|V(\bar{B}[u_1, u_3]) \cup \{v, v_0, u_4\}| \geq 2K_4^{+} \), \(\bar{G} \) contains three disjoint theta graphs, a contradiction. Thus, \(u_3v_p \notin E(G) \) and \(u_4v_p \notin E(G) \). This implies that there exist \(v_i, v_j \in V(H) - \{v_p, v_q\} \), such that \(\{v_i, v_j\} \subseteq N_H(u_3) \cap N_H(u_4) \). By (1), we see that \(|\{v_i, v_j\} \cap \{1, 2, 3, 4\}| \leq 1 \) and \(|\{i, j\} \cap \{1, 2, 3, 4\}| \leq 1 \). Therefore, \(\{v_i, v_j\} \cup V(\bar{B}[u_3, u_4]) \) contains two disjoint theta graphs, which contradicts (1). This completes the proof that \(B \) is not an end block, and in particular, we see that every end block of \(F \) is isomorphic to \(K_2 \).

Claim 3.4. Let \(F \in F^* \) with \(|V(F)| \geq 4 \). Then each block of \(F \) is isomorphic to \(K_2 \).

Proof. Since \(|V(F)| \geq 4 \), \(F \) contains at least two end block, say \(F_1 \) and \(F_2 \). Note \(F_i \cong K_2 \) for each \(1 \leq i \leq 2 \). Let \(u_1 \in V(F_1) \) such that \(d_{F_1}(u_1) = 1 \) and let \(u_3 \in V(F_2) \) such that \(d_{F_2}(u_3) = 1 \). Suppose that the conclusion of Claim 3.4 is false, we may assume that \(B \) is the nearest block to \(u_1 \) in \(F \), such that \(B \) is a cycle. By Claim 3.3, \(B \) is not an end block of \(F \). We choose two distinct vertices \(u_2 \) and \(u_4 \) such that both of them are distinct with \(u_1 \) and \(u_3 \) as follows: Let \(u_2 \in V(B) \) and \(u_2 \) is not a cut vertex of \(F \), and choose \(u_4 \) such that \(u_4 \) is not a cut vertex of \(F \), unless \(F \) contains exactly three blocks \(F_1, F_2 \) and \(B \cong K_3 \), then choose \(u_4 \in V(F_2) - \{u_3\} \). Notice that if there exists \(u' \) such that \(u_1u' \in E(G) \), then using these blocks of \(F \) from \(F_1 \) to \(B \), we see that \(|V(F - \{u_3\}) \cup \{u_1\}| \geq 2 \), a contradiction. Therefore, we assume that \(u_1u' \notin E(G) \) by symmetry. Then \(|E(u_1, \{v_1, v_2, v_3, v_4\})| \geq 2 \); otherwise, \(u_3v \notin E(G) \) and \(u_4v \notin E(G) \). By pigeonhole principle, there exists \(\{v_p, v_q\} \subseteq V(H) \) such that \(\{v_p, v_q\} \subseteq N_H(u_1) \cap N_H(u_2) \). If \(u_3v_p \in E(G) \), then \(V(\bar{B}[u_1, u_3]) \cup \{v_p\} \) contains a theta graph, notice that \(|V(\bar{B}[u_1, u_3]) \cup \{v, v_0, u_4\}| \geq 2K_4^{+} \), \(\bar{G} \) contains three disjoint theta graphs, a contradiction. Thus, \(u_3v_p \notin E(G) \) and \(u_4v_p \notin E(G) \). This implies that there exist \(v_i, v_j \in V(H) - \{v_p, v_q\} \), such that \(\{v_i, v_j\} \subseteq N_H(u_3) \cap N_H(u_4) \). By (1), we see that \(|\{v_i, v_j\} \cap \{1, 2, 3, 4\}| \leq 1 \) and \(|\{i, j\} \cap \{1, 2, 3, 4\}| \leq 1 \). Therefore, \(\{v_i, v_j\} \cup V(\bar{B}[u_3, u_4]) \) contains two disjoint theta graphs, which contradicts (1). This completes the proof that \(B \) is not an end block, and in particular, we see that every end block of \(F \) is isomorphic to \(K_2 \).
in different blocks, with the same role of u_1, u_2, u_3 and u_4, we continue part of the process in the proof of Claim 3.3, we can complete the proof. This proves Claim 3.4.

\[\square \]

Claim 3.5. $|V(F)| \leq 3$ for each $F \in F^*$.

Proof. Otherwise, suppose that there exists $F \in F^*$ such that $|V(F)| \geq 4$. By Claim 3.4, F must be a tree.

Suppose for the moment that there exists three distinct leaves in $V(F)$, say u_1, u_2 and u_3. Then for each $1 \leq i \leq 3$, $|E(u_i, V(H))| \geq l - 1$ if $7 \leq l \leq 8$, and $|E(u_i, V(H) \cup \{v\})| \geq l - 1$ if $l = 6$. As $|V(F)| \geq 4$, by Claim 3.4, we choose $u_4 \in V(F - \{u_1, u_2, u_3\})$ as follows: if F contains at least four leaves, then let u_4 denote the leaf different from u_1, u_2 and u_3; otherwise, let u_4 and u_1 belongs to the same block of F. It is obvious that $|E(u_4, V(H))| \geq l - 3$ if $7 \leq l \leq 8$, and $|E(u_4, V(H) \cup \{v\})| \geq l - 3$ if $l = 6$.

Suppose that $l = 8$. Notice that there exist $v', v'' \in V(H)$ with $v' \neq v''$ and $v'v'' \in E(G)$ such that $\{v', v''\} \subseteq N_H(u_1) \cap N_H(u_2)$. It is obvious that $\{v', v'', u_1, u_2\} \supseteq K_4$. By Claim 3.1, $H - \{v', v''\} + \{v_0, u_3\}$ induces a graph with minimum degree at least five, and therefore contains two disjoint copies of K_4 by Theorem 1.5, a contradiction. Next, suppose that $l = 7$, by pigeonhole principle, we can find two distinct vertices $v_i, v_j \in V(H)$ such that $\{v_i, v_j\} \subseteq N_H(u_3) \cap N_H(u_4)$. Since there is a path P in F which connecting u_3 and u_4, thus, $[V(P) \cup \{v_i, v_j\}]$ contains a theta graph. Notice that there exist $v', v'' \in V(H - \{v_1, v_2\})$ with $v' \neq v''$ and $v'v'' \in E(G)$, such that $\{v', v''\} \subseteq N_H(u_1) \cap N_H(u_2)$. It is obvious that $\{v', v'', u_1, u_2\} \supseteq K_4$. As $|[v_0] \cup V(H - \{v', v'', v_i, v_j\})| \supseteq K_4$, which contradicts (1). Thus, $l = 6$.

We show $N_H(u_1) \cap N_H(u_4) \neq \emptyset$. Suppose not, without loss of generality, we may assume that $N_G(u_1) \cap (V(H) \cup \{v\}) = \{v_1, v_2, v_3, v_4\}$ and $N_G(u_4) \cap (V(H) \cup \{v\}) = \{v_5, v_6\}$. If $u_3v \in E(G)$, then $[V(F - \{u_2\}) \cup \{v\}]$ contains a theta graph, as $[V(H) \cup \{v_0, u_2\}] \supseteq 2K_4$, which contradicts (1). Hence, $u_3v \notin E(G)$ and $u_2v \notin E(G)$ by symmetry. Furthermore, by the choice of v, we have $E(v, V(H)) \geq 4$ and so $N_H(v) \cap N_H(u_1) \neq \emptyset$, without loss of generality, say $v_1 \in E(G)$. Then $[v, v_1, u_1, u_4] \supseteq K_4$, since $|N_H(u_2) \cap N_H(u_3)| \geq 3$, it follows that $[V(H - \{v_1\}) \cup \{u_2, u_3, v_0\}] \supseteq 2K_4$, which contradicts (1).

Now, by symmetry, say $v_6 \in N_H(u_1) \cap N_H(u_4)$. If $u_2v_6 \notin E(G)$, then $[\{v_6\} \cup V(F - \{u_2\})]$ contains a theta graph, as $[V(H - \{v_6\}) \cup \{v, u_3\}] \supseteq 2K_4$, which contradicts (1). Thus, $v_6u_2 \notin E(G)$ and $v_6u_3 \notin E(G)$ by symmetry. As $|E(u_3, V(H))| \geq 4$ and $|E(u_3, V(H))| \geq 4$, we may assume that $\{v_1, v_2, v_3, v_4\} \subseteq N_H(u_2)$ and $\{v_1, v_2, v_3\} \subseteq N_H(u_2) \cap N_H(u_3)$. If $u_3v_1 \in E(G)$, then $[\{v_6, v_5, v_3, u_4\}] \supseteq K_4$. Notice that $[V(H - \{v_5, v_6\}) \cup \{v_0, v_2, u_3, u_4\}] \supseteq 2K_4$, by the definition of v and (3), which contradicts (1). Thus, $v_6u_1 \notin E(G)$. If $u_1v_4 \in E(G)$, then $u_2v_6 \in E(G)$. Otherwise, say $u_2v \notin E(G)$. Then $u_2v \in E(G)$ and $E(v, V(H)) \geq 5$ by the choice of v. By symmetry, we may assume that $\{v_1, v_2\} \subseteq N_H(v) \cap N_H(u_3)$. Then $[v, v_1, v_2, u_3] \supseteq K_4$, $[u_1, u_4, v_4, v_6] \supseteq K_4$, and $[u_2, v_3, v_5, v_6] \supseteq K_4$, which contradicts (1). Hence,
by (1), \(v_1 \notin E(G) \) for each \(i \in \{1, 2, 3\} \), that is, \(|E(v, V(H))| \leq 3 \), which contradicts the choice of \(v \). Therefore, \(u_1v_4 \notin E(G) \) and so \(\{v_1, v_2, v_3\} \subseteq N_H(u_1) \) and \(u_1v \in E(G) \). By (1) and (3), \(u_2v, u_3v \in E(G) \) and \(|E(v, V(H))| \leq 3 \), which contradicts the choice of \(v \). Consequently, \(F \) contains exactly two leaves and \(F \) must be a path with order at least four.

Let \(F = u_1v_2 \cdots u_{p-1}u_p \) and \(p \geq 4 \). Suppose that \(7 \leq l \leq 8 \), then continue the process as above, we can find three disjoint theta graphs, a contradiction.

Hence, \(l = 6 \). Then \(|E(u_1, V(H) \cup \{v\})| \geq 5 \), \(|E(u_p, V(H) \cup \{v\})| \geq 5 \), \(|E(u_2, V(H) \cup \{v\})| \geq 4 \) and \(|E(u_{p-1}, V(H) \cup \{v\})| \geq 4 \).

Suppose \(u_1v, u_pv \in E(G) \). Then \(u_2v \notin E(G) \) or \(u_{p-1}v \notin E(G) \), otherwise, \(\{v, u_1, u_2, u_{p-1}\} \supseteq K_4^* \), as \(|V(H) \cup \{v_0, u_p\}| \geq 2K_4 \) by Claim 3.2, which contradicts (1). By symmetry, say \(u_2v \notin E(G) \) and so \(|E(u_2, V(H))| \geq 4 \).

Without loss of generality, by pigeonhole principle, we may assume that \(v_1 \in N_H(u_2) \cap N_H(u_{p-1}) \) and \(\{v_1, v_2, v_3, v_4\} \subseteq N_H(u_2) \). Suppose for a moment that \(|N_H(u_2) \cap N_H(u_{p-1})| \geq 2 \). Without loss of generality, say \(u_pv_{p-1} \in E(G) \). Then \([u_2, u_{p-1}, v_1, v_2] \supseteq K_4^* \). We prove that \(u_1v \notin E(G) \) and \(u_2v \notin E(G) \). Otherwise, by symmetry, say \(v_1v \in E(G) \). If \(u_1v_1 \in E(G) \), then \(\{v, v_1, u_1, u_2\} \supseteq K_4^* \), since \(|\{u_p, v_0\} \cup (V(H - \{v_1\})| \geq 2K_4 \), which contradicts (1). Hence, \(u_1v_1 \notin E(G) \). Next, we show that \(u_1v_2 \notin E(G) \). Suppose that \(u_1v_2 \in E(G) \). Then \(|V(F - \{u_p\}) \cup \{v_2\}| \) contains a theta graph, as \(|\{v, u_p, v_0\} \cup (V(H - \{v_2\})| \geq 2K_4 \), a contradiction once again. Until now, we see that \(N_H(u_1) = \{v_3, v_4, v_5, v_6\} \). According to this, we have \(u_pv_1 \notin E(G) \) and \(u_pv_2 \notin E(G) \). This implies that \(N_H(u_1) = N_H(u_p) \). If \(u_2v \in E(G) \), then \(\{v, v_1, u_2, u_{p-1}\} \supseteq K_4^* \), notice that \(|V(H - \{v_1, v_2\}) \cup \{u_1, u_2, u_p, v_0\}| \geq 2K_4 \), which contradicts (1). Thus, \(u_2v \notin E(G) \) and it follows that there exists \(i \in \{3, 4\} \) such that \(v_i v \in E(G) \).

Without loss of generality, say \(i = 3 \), then \(\{v_3, v_4, v_5, v_6\} \subseteq N_H(v) \) and so \(|V(H - \{v_1, v_2\}) \cup \{v, u_p, u_1, v_0\}| \geq 2K_4 \), a contradiction. This proves that \(N_H(u_2) \cap N_H(u_{p-1}) = \{v_1\} \) and so \(u_pv_{p-1} \in E(G) \). Suppose that \(v_1u_1 \in E(G) \), then let \(P' = P - \{u_p\} \), then \(|V(P') \cup \{v_1\}| \) contains a theta graph, by (3), \(|V(H - \{v_1\}) \cup \{v, u_p\}| \geq 2K_4 \), which contradicts (1). Thus, \(v_1u_1 \notin E(G) \) and so \(|N_H - v_1(u_1) \cap N_H - v_1(u_p)| \geq 2 \).

If \(u_1v \in E(G) \), then \(|V(P - \{u_1, u_p\}) \cup \{v, v_1\}| \) contains a theta graph, as \(|V(H - \{v_1\}) \cup \{u_1, u_p\}| \geq 2K_4 \), which contradicts (1). Thus, \(u_1v \notin E(G) \).

As \(|E(v, V(H))| \geq 4 \), by the symmetry role of \(v_5 \) and \(v_6 \), we may assume that \(v_5v \in E(G) \), then \(|v, v_5, u_{p-1}, u_p| \supseteq K_4^* \), since \(u_1 \) and \(u_2 \) has at least two common neighbors in \(V(H - \{v_1, v_5, v_6\}) \), \(|V(H - \{v_5\}) \cup \{u_1, u_2\}| \geq 2K_4 \), which contradicts (1). Consequently, we may assume that \(u_1v \notin E(G) \) by symmetry. This gives us \(|E(u_1, V(H))| \geq 5 \) and so \(|E(v, V(H))| \geq 5 \) by the maximality of \(v \). Without loss of generality, we may assume that \(\{v_1, v_2, v_4, v_5\} \subseteq N_H(v) \) and \(\{v_1, v_2, v_3, v_4\} \subseteq N_H(u_1) \cap N_H(v) \). Because of \(|E(u_1, V(H))| \geq 5 \), we divide the proof into two cases.
Case 1. $u_1v_5 \in E(G)$.

Without loss of generality, say $v_4u_2, v_5u_2 \in E(G)$, because of $|E(u_2, V(H))| \geq 3$. If $u_{p-1}v_4 \in E(G)$, then $[u_1, u_2, \ldots, u_{p-1}, v_4]$ contains a theta graph, since $|V(H - \{v_4\}) \cup \{v, u_p, v_0\}| \geq 2K_4^-$, which contradicts (1) and proves that $u_{p-1}v_4 \notin E(G)$. Similarly, $u_{p-1}v_5 \notin E(G)$. If there exists $v \in \{v_1, v_2, v_3\}$, say $i = 1$, such that $v_1u_2 \in E(G)$, then $u_{p-1}v_1 \notin E(G)$, $N_H(u_{p-1}) = \{v_2, v_3, v_6\}$ and $u_{p-1}v \in E(G)$. Suppose that there exist $v_i, v_j \in \{v_1, v_4, v_5\}$ such that $u_p v_i, u_p v_j \in E(G)$, then $[v_1, v_2, u_p, v_6] \supseteq K_4^-$. For simplicity, say $i = 4$ and $j = 5$. Since $[v_4, v_5, v_6, u_{p-1}] \supseteq K_4^-$ and $[v_0, u_1, v_1, v_3] \supseteq K_4^-$, this contradicts (1) and proves that u_p has at most one neighbor in $\{v_1, v_4, v_5\}$. This implies that $u_p v_6, u_p v_4 \in E(G)$. Hence, $[v, u_{p-1}, v_6] \supseteq K_4^-$, notice that $|V(H - \{v_6\}) \cup \{v_0, u_1, u_2\}| \geq 2K_4^-$, a contradiction. This proves that u_p has no neighbor in $\{v_1, v_2, v_3\}$ and so $u_2v_6, u_2v \notin E(G)$. As $|E(u_{p-1}, V(H))| \geq 3$, we may assume that $v_2u_{p-1}, v_2u_{p-1} \in E(G)$. Since $[v, u_4, u_1, u_2] \supseteq K_4^-$ and $[v_0, v_2, v_3, u_{p-1}] \supseteq K_4^-$, $|E(u_p, \{v_1, v_5, v_6\})| \leq 1$ by (1) and (3). Therefore, $\{v_2, v_3, v_4\} \in N_H(u_p)$ and $u_p v \in E(G)$. However, $[v, v_5, v_6, u_{p-1}] \supseteq K_4^-$, $[u_{p-1}, v_2, u_3, u_p] \supseteq K_4^-$ and $[v_0, v_1, v_4, u_1] \supseteq K_4^-$, a contradiction. This proves Case 1.

Case 2. $u_1v_6 \in E(G)$.

Suppose that $u_2v_6 \in E(G)$. Then for each u_i with $1 \leq i \leq 4$, $v_iu_2 \notin E(G)$, otherwise, $[v, u_i, u_2, u_1] \supseteq K_4^-$, it is obvious that $|V(H - \{u_1\}) \cup \{v_0, u_p, u_{p-1}\}| \geq 2K_4^-$, which contradicts (1). However, this gives us $|E(u_2, V(H) \cup \{v\})| \leq 3$, a contradiction. Thus, $u_2 \notin E(G)$ and $u_{p-1}v_4 \notin E(G)$. If there exists $v_i \in \{v_1, v_2\}$, say $i = 1$, such that $v_1u_2 \in E(G)$, then $u_{p-1}v_1 \notin E(G)$, $N_H(u_{p-1}) = \{v_2, v_3, v_6\}$ and $u_{p-1}v \in E(G)$. This together with (1) tell us u_p has at most one neighbor in $\{v_1, v_3, v_4\}$ and thus $\{v_2, v_3, v_6\} \subseteq N_H(u_p)$ and $u_p \notin E(G)$. We see that $[v, u_p, u_{p-1}, v_6] \supseteq K_4^-$, $[v_1, u_2, v_3, v_4] \supseteq K_4^-$ and $[v_0, v_1, v_2, v_5] \supseteq K_4^-$, a contradiction. This proves that u_2 has no neighbor in $\{v_1, v_2\}$ and so $u_2v_5, u_2v_6 \in E(G)$. As $|E(u_{p-1}, V(H))| \geq 3$, by the symmetry role of v_1 and v_2, we may assume that $v_1u_{p-1} \in E(G)$. Suppose that $u_{p-1}v_6 \in E(G)$. If $v_0u_p \notin E(G)$, then $[u_{p-1}, u_p, v_1, v_6] \supseteq K_4^-$, $[v, v_2, v_3, u_1] \supseteq K_4^-$ and $[v_0, u_2, v_4, v_5] \supseteq K_4^-$, a contradiction. Therefore, $v_0u_p \in E(G)$ and then there exist $v_i, v_j \in \{v_2, v_3, v_4, v_5\}$, such that $u_1v_1, u_2v_2 \in E(G)$. If $2 \in \{i, j\}$, then $[v, v_1, v_2, u_p] \supseteq K_4^-$, $[v_1, u_1, u_{p-1}, v_6] \supseteq K_4^-$ and $[V(H - \{v_1, v_1, v_2, v_3\}) \cup \{v_0, u_2\}] \supseteq K_4^-$, a contradiction. Hence, $2 \notin \{i, j\}$. Then $[v_2, v_1, v_2, u_p] \supseteq K_4^-$, $[v_1, u_1, v_{p-1}, v_6] \supseteq K_4^-$ and $[V(H - \{v_1, v_1, v_2, v_3\}) \cup \{v_0, v, v_1\}] \supseteq K_4^-$, a contradiction. This proves that $u_{p-1}v_6 \notin E(G)$ and it follows that $v_2u_{p-1}, v_3u_{p-1} \in E(G)$. By (1), $u_{p}v_5 \notin E(G)$. Since $|V(F - \{u_1, u_p\}) \cup \{v_5, v_6\}|$ contains a theta graph and u_p has at least two neighbors in $\{v_1, v_2, v_3, v_4\}$, we see that $|V(H - \{v_5, v_6\}) \cup \{v, u_1, u_p, v_0\}| \geq 2K_4^-$, a contradiction. This completes the proof of Case 2 and the proof of Claim 3.5. □
Since $n \geq 13$ and $6 \leq |V(H)| \leq 8$, it follows from Claim 3.5 that $|F^*| \geq 2$.

Claim 3.6. $|V(F)| \leq 2$ for each $F \in F^*$.

Proof. By way of contradiction. Suppose that there exists $F \in F^*$ such that $|V(F)| \geq 3$. According to Claim 3.5, $|V(F)| = 3$. If F is a triangle, then the proof of Claim 3.3 works, because of $|F^*| \geq 2$. Thus, F is a path of order three and write $F = u_1u_4u_3$. Let $F' = F^* - F$ and $u_4 \in V(F')$ such that u_2 is an end vertex of F'. It is obvious that $d_{F'}(u_2) = 1$. Suppose that $7 \leq l \leq 8$. It is obvious that there exists $v_i \in V(H)$, such that $u_1v_i, u_4v_i, u_3v_i \in E(G)$, that is, $\{u_1, u_4, u_3\} \supseteq K_4$, since $|V(H - \{v_i\}) \cup \{v_0, u_2\}| \geq 2K_4$, a contradiction. Thus, $l = 6$, then continue the same proof in Claim 3.5 (when $|F| \geq 4$ and contains at least three leaves).

Claim 3.7. For each graph $F \in \mathcal{F}$ such that $|V(F)| = 2$, there exists $S \subset V(H)$ with $|S| = 2$ and $|V(F) \cup S| \geq K_4$.

Proof. Let $F \in \mathcal{F}$ such that $|V(F)| = 2$, label $V(F) = \{u_1, u_2\}$. Since $|E(u_1, V(H))| \geq l - 1$ if $7 \leq l \leq 8$ and $|E(u_1, V(H) \cup \{v\})| \geq l - 1$ for each i with $1 \leq i \leq 2$, it follows from the pigeonhole principle that there exists a subset $S \subset V(H)$ with $|S| = 2$ and $S \subseteq N_H(u_1) \cap N_H(u_2)$. By (3), we know $|V(F) \cup S| \geq K_4$.

Claim 3.8. For any $u \in V(G^*)$, $|E(u, \{v_0\} \cup V(H))| = |E(u, V(H))| \leq l - 1$ if $7 \leq l \leq 8$; $|E(u, V(H) \cup \{v\})| \leq l$ if $l = 6$.

Proof. Suppose that there exists $u \in V(G^*)$ such that $|E(u, V(H))| \geq l$ if $7 \leq l \leq 8$, and $|E(u, V(H) \cup \{v\})| \geq l + 1$ if $l = 6$. By Claim 3.6, we may assume that F^* contains two components F_1 and F_2 with $|V(F_i)| \leq 2$ for each $1 \leq i \leq 2$, such that $u \in V(F_1)$. Suppose that $|V(F_2)| = 2$ and label $F_2 = u_2u_3$. Note that $|E(u_1, V(H))| \geq l - 1$ for each $i \in \{2, 3\}$. By Claim 3.7, there exist $v_i, v_j \in V(H)$ such that $\{u_2, u_3, v_i, v_j\} \supseteq K_4$. If $7 \leq l \leq 8$, combining with (2) and (3), $|V(H - \{v_i, v_j\}) \cup \{u, v_0\}| \geq 2K_4$, which contradicts (1). Therefore, $l = 6$. By the choice of $v_i, |E(v, V(H))| = 6$. Notice that $v, v_q, v, u \supseteq K_4$. Since $F^* \setminus \{F_1 \cup F_2\} \neq \emptyset$, choose $u_4 \in V(F^* \setminus \{F_1 \cup F_2\})$. By Claim 3.6, $|E(u_4, V(H))| \geq 4$, choose $\{v_p, v_q\} \subseteq N_H(u_4) \cap N_H(v) - \{v_i, v_j\}$ such that $p \neq q$. Now, $|E(u_4, v_0, v_q)| \geq K_4$ and $|E(v, v_q, v_0)| \geq K_4$, which contradicts (1). This shows the order of each components of $F^* \setminus F_1$ is one. Now, note that $|F^* \setminus F_1| \geq 3$, we can choose three different vertices u_1, u_2, u_3, such that $|E(u_i, V(H))| \geq 5$ for each $1 \leq i \leq 3$. As above, it is obvious that $|V(H) \cup \{v, u, v_0, u_1, u_2, u_3\}| \geq 3K_4$, a contradiction.

Now we are in the position to complete the proof of Theorem 1.8. By Claim 3.6 and Claim 3.8, $|V(F)| = 2$ for all $F \in F^*$, we have

$$
\sum_{F \in F^*} |E(F)| = \begin{cases} \frac{n-1-l}{2}, & \text{if } 7 \leq l \leq 8 \\ \frac{n-3}{2}, & \text{if } l = 6. \end{cases}
$$
Suppose that \(7 \leq l \leq 8\). We may assume that \(u_1u_2\) and \(u_3u_4\) are two component of \(G^*\), since \(|E(u_i, V(H))| \geq l - 1\), by Claim 3.2, it is obvious that \([V(H) \cup \{v_0, u_1, u_2, u_3, u_4\}] \supseteq 3K_4\), a contradiction. Thus, \(l = 6\), and according to Claim 3.8, we obtain

\[
|E(G)| = |E([\{v_0, v\} \cup V(H)])| + |E(V(G^*), \{v_0, v\} \cup V(H))| + \sum_{F \in F^*} |E(F)| \\
\leq 27 + 5|V(G^*)| + \sum_{F \in F^*} |E(F)| \\
= 27 + 5(n - 8) + \frac{n - 8}{2} \\
= \frac{11n - 34}{2},
\]

this is an obvious contradiction and completes the proof of Theorem 1.8.

Acknowledgements. The authors wish to thank the referees for their suggestions for revising the manuscript, especially, one of the referees helps us to construct an extremal graph in Conjecture 1.6.

References

YUNSHU GAO
School of Mathematics and Computer Science
Ningxia University
Yinchuan, 750021, P. R. China
E-mail address: gys04@gmail.com
Ding Ma
School of Mathematics and Computer Science
Ningxia University
Yinchuan, 750021, P. R. China
E-mail address: mading0202@sina.com