DOI QR코드

DOI QR Code

Properties of IZTO Thin Films Deposited on PET Substrates with The SiO2 Buffer Layer

  • Park, Jong-Chan (Department of Electronic Engineering, Inha University) ;
  • Kang, Seong-Jun (Department of Electric and Semiconductor Engineering, Cheonnam University) ;
  • Chang, Dong-Hoon (Department of Information & Communication Engineering, Inha University) ;
  • Yoon, Yung-Sup (Department of Electronic Engineering, Inha University)
  • Received : 2014.11.05
  • Accepted : 2014.12.30
  • Published : 2015.01.31

Abstract

150-nm-thick In-Zn-Tin-Oxide (IZTO) films were deposited by RF magnetron sputtering after a 10 to 50-nm-thick $SiO_2$ buffer layer was deposited by plasma enhanced chemical vapor deposition (PECVD) on polyethylene terephthalate (PET) substrates. The electrical, structural, and optical properties of the IZTO/$SiO_2$/PET films were analyzed with respect to the thickness of the $SiO_2$ buffer layer. The mechanical properties were outstanding at a $SiO_2$ thickness of 50 nm, with a resistivity of $1.45{\times}10^{-3}{\Omega}-cm$, carrier concentration of $8.84{\times}10^{20}/cm^3$, hall mobility of $4.88cm^2/Vs$, and average IZTO surface roughness of 12.64 nm. Also, the transmittances were higher than 80%, and the structure of the IZTO films were amorphous, regardless of the $SiO_2$ thickness. These results indicate that these films are suitable for use as a transparent conductive oxide for transparency display devices.

Keywords

References

  1. N. Ito, Y. Sato, P. K. Song, A. Kaijio, K. Inoue, and Y. Shigesato, "Electrical and Optical Properties of Amorphous Indium Zinc Oxide Films," Thin Solid Films, 496 [1] 99-103 (2005). https://doi.org/10.1016/j.tsf.2005.08.257
  2. K. H. Lee and H. W. Jang, "Mechanism for The Increase of Indium-Tin-Oxide Work Function by $O_2$ Inductively Coupled Plasma Treatment," J. Appl. Phys., 95 586-90 (2004). https://doi.org/10.1063/1.1633351
  3. H. Zhuang, J. Yan, C. Xu, and D. Meng, "Transparent Conductive $Ga_2O_3$/Cu/ITO Multilayer Films Prepared on Flexible Substrates at Room Temperature," Appl. Surf. Sci., 307 241-45 (2014). https://doi.org/10.1016/j.apsusc.2014.04.020
  4. B. Houng, S. L. Lin, S. W. Chen, and A. Wang, "Influence of An $In_2O_3$ Buffer Layer on The Properties of ITO Thin Films," Ceram. Int., 37 [8] 3397-403 (2011). https://doi.org/10.1016/j.ceramint.2011.05.142
  5. J. H. Kim, K. A. Jeon, G. H. Kim, and S. Y. Lee, "Electrical, Structural, and Optical Properties of ITO Tin Films Prepared at Room Temperature by Pulsed Laser Deposition," Appl. Surf. Sci., 252 [13] 4834-32 (2005). https://doi.org/10.1016/j.apsusc.2005.07.134
  6. D. Y. Lee, J. R. Lee, G. H. Lee, and P. K. Song, "Study on In-Zn-Sn-O and In-Sn-Zn-O Films Deposited on PET Substrate by Magnetron Co-sputtering System," Surf. Coat. Technol., 202 [22-23] 5718-23 (2008). https://doi.org/10.1016/j.surfcoat.2008.06.091
  7. C. Jang, K. Kim, and K. C. Choi, "Flexible Photoluminescent Display Fabricated With Low-Temperature Process Using PET Substrates," J. Display Technol., 8 [5] 250-55 (2012). https://doi.org/10.1109/JDT.2011.2177242
  8. T. Ishida, H. Kobayashi, and Y. Nakato, "Structures and Properties of Electron Beam Vaporated Indium Tin Oxide Films as Studied by Xray Photoelectron Spectroscopy and Work Function Measurements," J. Appl. Phys., 73 4344-50 (1993). https://doi.org/10.1063/1.352818
  9. Y. R. Denny, S. Y. Lee, K. I. Lee, S. J. Seo, S. K. Oh, H. J. Kang, S. Heo, J. G. Chung, J. C. Lee, and S. Tougaard, "Effects of Gas Environment on Electronic and Optical Properties of Amorphous Indium Zinc Tin Oxide Thin Films," J. Vac. Sci. Technol. A., 31 031508-1-7 (2013). https://doi.org/10.1116/1.4801023
  10. B. J. Woo, J. S. Hong, S. T. Kim, S. H. Park, and J. J. Kim, "Effect of A $SiO_2$ Buffer Layer on the Characteristics of $In_2O_3-ZnO-SnO_2$ Films Deposited on PET Substrates," J. Korean Phys. Soc., 48 [6] 1579-82 (2006).
  11. X. Ding, J. Yan, T. Li, and L. Zhang, "Transparent Conductive ITO/Cu/ITO Films Prepared on Flexible Substrates at Room Temperature," Appl. Surf. Sci., 258 [7] 3082-85 (2011). https://doi.org/10.1016/j.apsusc.2011.11.041
  12. C. M. Lee, A. Park, Y. J. Cho, M. W. Park, W. I. Lee, and H. W. Kim, "Influence of ZnO Buffer Layer Thickness on The Electrical and Optical Properties of Indium Zinc Oxide Thin Films Deposited on PET Substrates," Ceram. Int., 34 [4] 1093-96 (2007). https://doi.org/10.1016/j.ceramint.2007.09.083
  13. X. Ding, J. Yan, T. Li, and L. Zhang, "Effect of $SiO_2$ Buffer Layer Thickness on The Properties of ITO/Cu/ITO Multilayer Films Deposited on Polyethylene Terephthalate Substrates," Vacuum, 86 [4] 443-47 (2011). https://doi.org/10.1016/j.vacuum.2011.09.005
  14. G. Haacke, "Transparent Conducting Coatings," Ann. Rev. Mater. Sci., 7 73-93 (1977). https://doi.org/10.1146/annurev.ms.07.080177.000445

Cited by

  1. Properties of IZTO Thin Films Deposited on PEN Substrates with Different Working Pressures vol.52, pp.3, 2015, https://doi.org/10.4191/kcers.2015.52.3.224
  2. Properties of IZTO Thin Films on Glass with Different Thickness of SiO2 Buffer Layer vol.52, pp.4, 2015, https://doi.org/10.4191/kcers.2015.52.4.290
  3. Synthetic analysis on the IZTO thin films deposited on various plastic substrates with the buffer layer vol.28, pp.21, 2017, https://doi.org/10.1007/s10854-017-7516-z
  4. Physical property improvement of IZTO thin films using a hafnia buffer layer vol.124, pp.1, 2018, https://doi.org/10.1007/s00339-017-1500-6