DOI QR코드

DOI QR Code

전도성 고분자 물질이 결합된 하이브리드 커플러를 적용한 RF 가스 센서

RF Gas Sensor Using 4-Port Hybrid Coupler with Conducting Polymer

  • 이용주 (연세대학교 전기전자공학과) ;
  • 김병현 (연세대학교 전기전자공학과) ;
  • 이희조 (대구대학교 물리교육과) ;
  • 홍윤석 (삼성탈레스) ;
  • 이승환 (연세대학교 화공생명공학과) ;
  • 최향희 (연세대학교 화공생명공학과) ;
  • 육종관 (연세대학교 전기전자공학과)
  • Lee, Yong-Joo (Department of Electric and Electronic Engineering, Yonsei University) ;
  • Kim, Byung-Hyun (Department of Electric and Electronic Engineering, Yonsei University) ;
  • Lee, Hee-Jo (Department of Physics Education, Daegu University) ;
  • Hong, Yunseog (Samsung Thales) ;
  • Lee, Seung Hwan (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Choi, Hyang Hee (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Yook, Jong-Gwan (Department of Electric and Electronic Engineering, Yonsei University)
  • 투고 : 2014.09.27
  • 심사 : 2014.12.15
  • 발행 : 2015.01.30

초록

본 논문에서는 2.4 GHz에서 동작하는 $90^{\circ}$ 하이브리드 커플러 구조에 전도성 고분자 화합물을 적용한 가스 센서를 제안하였다. 가스 센서에서 전도성 고분자 화합물(Conducting Polymer: CP)는 특정 가스를 검출하는 검출 물질로 사용되며, 특정 가스와 반응할 때 대개 물질의 일함수(work function)와 전도도(conductivity) 및 임피던스가 변하게 된다. 이러한 물성변화 특성의 근거로 마이크로파 대역에서 $90^{\circ}$ 하이브리드 커플러 구조에 전도성 고분자를 적용하여 가변 감쇄기 및 가변 위상 천이기 형태의 센서를 제작하였다. 본 연구에서 제안한 센서는 전도성 고분자 화합물의 높은 전도도를 이용하여 기존 전송선로의 일부를 전도성 고분자 물질로 대체하였다. 실험은 온도 $28^{\circ}$와 상대습도 85 % 환경에서 진행되었으며, 센서에 100 ppm 농도의 에탄올 가스를 노출시켰다. 그 결과, $S_{21}$의 진폭 특성이 최대 0.13 dB 변하였고, ${\angle}S_{21}=360^{\circ}$를 만족하는 주파수가 2.875 MHz 이동한 것을 확인하였다.

In this paper, a gas sensor using a modified $90^{\circ}$ hybrid coupler structure with conducting polymer which operates at 2.4 GHz is represented. Conducting polymers are used to the gas sensing material in proposed sensors. The conducting polymer varies its electrical property, such as work function and conductivity corresponding to the certain gas. To verify this variation of electrical property of conducting polymer at microwave frequencies, the conducting polymer is incorporated with the $90^{\circ}$ hybrid coupler structure, and this proposed sensor operates as reflection type variable attenuator and variable phase shifter. The conducting polymer is employed as impedence-variable transmission lines that cause a impedance mismatching between the general transmission line and conducting polymer. The experiment was conducted with 100 ppm ethanol gas at temperature of $28^{\circ}C$ and relative humidity of 85 %. As a result, the amplitude deviation of $S_{21}$ is 0.13 dB and the frequency satisfying ${\angle}S_{21}=360^{\circ}$ is shifted about 2.875 MHz.

키워드

참고문헌

  1. J. L. Fontecha, M. J. Fernandez, I. Sayago, J. P. Santos, J. Gutierrez, M. C. Horrillo, I. Gracia, C. Cane, and E. Figueras, "Fine-tuning of the resonant frequency using a hybrid coupler and fixed components in SAW oscillators for gas detection", Sens. Actuators B, vol. 103, pp. 139-144, Sep. 2004. https://doi.org/10.1016/j.snb.2004.04.046
  2. T. H. Lin, Y. T. Li, H. C. Hao, I. C. Fang, C. M. Yang, and D. J. Yao, "Surface acoustic wave gas sensor for monitoring low concentration ammonia", Solid-State Sens, Actuators and Microsystems Conference, pp. 1140-1143, Jun. 2011.
  3. J. Rossignol, G. Barochi, B. de Fonseca, J. Brunet, M. Bouvet, A. Pauly, and L. markey, "Microwave-based gas sensor with phthalocyanine film at room temperature", Sens. Actuators B, Chem, vol. 189, pp. 213-216, Apr. 2012.
  4. C. Luo, A. Chakraborty, "Effects of dimensions on the sensitivity of a conducting polymer microwire sensor", Microelectron, vol. J40, no. 6, pp. 912-920, Jun. 2009. https://doi.org/10.1016/j.mejo.2008.11.064
  5. J. W. Gardner, P. K. Guha, F. Udrea, and J. A. Covington, "CMOS interfacing for integrated gas sensors: A review", IEEE Sensor Journal, vol. 10, no. 12, pp. 1833-1848, Dec. 2010. https://doi.org/10.1109/JSEN.2010.2046409
  6. B. Adhikari, S. Majumdar, "Polymers in sensor application", Progress in Polymer Science, vol. 29, pp. 699-766, Jul. 2004. https://doi.org/10.1016/j.progpolymsci.2004.03.002
  7. J. Janata, M. Josowicz, "Conducting polymers in electronic chemical sensors", Nature, vol. 2, pp. 19-244, Jan. 2003. https://doi.org/10.1038/nmat768
  8. M. F. Mabrook, C. Pearson, and M. C. Petty, "Inkjetprinted polymer films for the detection of organic vapors", IEEE Sens. Journal, vol. 6, pp. 1435-1444, Dec. 2006. https://doi.org/10.1109/JSEN.2006.884168
  9. Y. Kim, S. Lee, H. H. Choi, J. S. Noh, and W. Lee, "Detection of a nerve agent simulant using single-walled carbon nanotube networks: dimethyl-methyl-phosphonate", Nanotechnology, vol. 21, pp. 495501(1-5), Sep. 2010.
  10. W. Wen, H. Shitang, L. Shunzhou, L. Minghua, and P. Yong, "Enhanced sensitivity of SAW gas sensor coated molecularly imprinted polymer incorporating high frequency stability oscillator", Sens. and Actuators B, vol. 125, pp. 422-427, Mar. 2007. https://doi.org/10.1016/j.snb.2007.02.037
  11. H. Lee, G. Shaker, K. Naishadham, X. Song, M. Mc- Kinley, B. Wagner, and M. Tentzeris, "Carbon-nanotube loaded antenna-based ammonia gas sensor", IEEE Transactions on Microwave Theory and Techniques, vol. 59, no. 10, pp. 2665-2673, Oct. 2011. https://doi.org/10.1109/TMTT.2011.2164093
  12. C. Bernou, D. Rebiere, and J. pistre, "Microwave sensors: a new sensing principle. Application to humuduty detection", Sens. and Actuators B, vol. 68, pp. 88-93, Aug. 2000. https://doi.org/10.1016/S0925-4005(00)00466-4
  13. R. A. Potyrailo, W. G. Morris, "Multianalyte chemical identification and quantitation using a single radio frequency identification sensor", Anal. Chem., vol. 79, pp. 45-51, Nov. 2007. https://doi.org/10.1021/ac061748o
  14. B. -H. Kim, Y. -J. Lee, H. -J. Lee, Y. Hong, M. H. Chung, W. Cho, H. H. Choi, and J. -G. Yook, "A gas sensor using double split-ring resonator coated with conducting polymer at microwave frequencies", IEEE Sens. 2014 Conference Proceedings, 2014. accepted.
  15. Y. -J. Lee, B. -H. Kim, H. -J. Lee, Y. Hong, S. H. Lee, J. J. Lee, H. H. Choi, and J. -G. Yook, "A reflection type gas sensor using conducting polymer as a variable impedance at microwave frequencies", IEEE Sens., 2014. accepted.
  16. D. M. Pozar, Microwave Engineering, New York: Wiley, pp. 57-66, 1998.
  17. D. Henkes, "Analysis of a variable attenuator using a 3 dB quadrature coupler", Appl. Microwave Wireless, vol. 11, pp. 44-56, Jun. 1999.
  18. H. Hayashi, T. Nakagawa, "A miniaturized MMIC analog phase shifter using two quarter-wave-length transmission lines", IEEE Transactions on Microwave Theory and Techniques, vol. 50, no. 1, pp. 150-153, Jan. 2002. https://doi.org/10.1109/22.981259
  19. L. J. van der Pauw, "A method of measuring specific resistivity and hall effect of discs of arbitrary shape", Philips Res. Rep., vol. 13, no. 1, pp. 1-9, Fab. 1958.