DOI QR코드

DOI QR Code

Synthesis and Functionalized Conditions of Quaternized Poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) Anion Exchange Membrane

질산성 질소 제거용 Quaternized Poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) 음이온교환막 제조와 관능화 조건

  • Oh, Chang Min (Department of Applied Chemistry and Biological Engineering, Chungnam National University) ;
  • Hwang, Taek Sung (Department of Applied Chemistry and Biological Engineering, Chungnam National University)
  • 오창민 (충남대학교 바이오응용화학과) ;
  • 황택성 (충남대학교 바이오응용화학과)
  • Received : 2014.07.09
  • Accepted : 2014.08.01
  • Published : 2015.01.25

Abstract

In this study, we synthesized poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene) (PVTD) copolymer and introduced functional group through quaternization reaction for removing nitrate from drinking water. Also, optimizing conditions (reaction time, reaction temperature and functionalized agents concentration) for introducing the functional group were confirmed. The basic properties such as water uptake, swelling ratio, electrical resistance, ion exchange capacity and anion permselectivity for removing nitrate from drinking water were measured. The optimal values of water uptake, electrical resistance and ion exchange capacity of synthesized anion exchange membrane were 51.2%, $5.4{\Omega}{\cdot}cm^2$, and 1.04 meq/g, respectively.

본 연구에서는 수중 질산성 질소($NO{_3}^-$) 제거용 음이온교환막 제조를 위하여 poly(vinylimidazole-co-trifluoroethylmethacrylate-co-divinylbenzene)(PVTD) 공중합체를 제조하고, quaternization 반응을 통하여 관능기를 도입하기 위한 최적화 반응온도, 반응시간, 관능화농도 조건을 규명하였다. 제조한 음이온교환막의 구조 확인과 분자량 측정을 위하여 FTIR, $^1H$ NMR, 스펙트럼 분석과 GPC 분석을 하였다. 또한 제조한 음이온교환막의 함수율, 팽윤율, 전기저항, 이온교환용량과 같은 기본물성을 측정하였다. 또한 수중 질산염 제거율과 선택성을 확인하기 위하여 막의 음이온 투과성을 측정하여 질산성 질소의 선택성을 확인하였다. 최적 함수율, 전기저항, 이온교환용량은 각각 51.2%, $5.4{\Omega}{\cdot}cm^2$, 1.04 meq/g으로 측정되었다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. A. Bhatnagar and M. Sillanp, Chem. Eng. J., 168, 493 (2011). https://doi.org/10.1016/j.cej.2011.01.103
  2. H. Song, Y. Zhou, A. Li, and S. Mueller, Desalination, 296, 53 (2012). https://doi.org/10.1016/j.desal.2012.04.003
  3. S. Ghafari, M. Hasan, and M. K. Aroua, Bioresour. Technol., 99, 3965 (2008). https://doi.org/10.1016/j.biortech.2007.05.026
  4. O. Altintas, A. Tor, Y. Cengeloglu, and M. Ersoz, Desalination, 239, 276 (2009). https://doi.org/10.1016/j.desal.2008.03.024
  5. P. C. Mishra and R. K. Patel, J. Environ. Manage., 90, 519 (2009). https://doi.org/10.1016/j.jenvman.2007.12.003
  6. K. Kesore, F. Janowski, and V. A. Shaposhnik, J. Memb. Sci., 127, 17 (1997). https://doi.org/10.1016/S0376-7388(96)00282-7
  7. K. Kimura, M. Nakamura, and Y. Watanabe, Water Res., 36, 1758 (2002). https://doi.org/10.1016/S0043-1354(01)00376-1
  8. A. Kapoor and T. Viraraghavan, J. Environ. Eng., 123, 371 (1997). https://doi.org/10.1061/(ASCE)0733-9372(1997)123:4(371)
  9. K. Mizuta, T. Matsumoto, Y. Hatate, K. Nishihara, and T. Nakanishi, Bioresour. Technol., 95, 255 (2004). https://doi.org/10.1016/j.biortech.2004.02.015
  10. M. Alikhani and M. R. Moghbeli, Chem. Eng. J., 239, 93 (2014). https://doi.org/10.1016/j.cej.2013.11.013
  11. S. Ben Hamouda, K. Touati, and M. B. Amor, Arab. J. Chem., (2012).
  12. S. Shams, Assessing innovative technologies for nitrate removal from drinking water, Waterloo, Canada, 2010.
  13. K. S. Ha, J. Environ. Eng., 19, 49 (1997).
  14. T. W. Xu, Y. Li, L. Wu, and W. H. Yang, Sep. Purif. Technol., 60, 73 (2008). https://doi.org/10.1016/j.seppur.2007.07.049
  15. T. Xu, J. Memb. Sci., 263, 1 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
  16. A. A. Hekmatzadeh, A. Karimi-Jashani, N. Talebbeydokhti, and B. Klove, Desalination, 284, 22 (2012). https://doi.org/10.1016/j.desal.2011.08.033
  17. F. Guesmi, C. Hannachi, and B. Hamrouni, Can. J. Chem. Eng., 91, 1465 (2013). https://doi.org/10.1002/cjce.21744
  18. T. Sata, K. Teshima, and T. Yamaguchi, J. Polym. Sci: Part A; Polym. Chem., 34, 1475 (1996). https://doi.org/10.1002/(SICI)1099-0518(199606)34:8<1475::AID-POLA11>3.0.CO;2-5
  19. M. J. Ariza and T. F. Otero, J. Memb. Sci., 290, 241 (2007). https://doi.org/10.1016/j.memsci.2006.12.040
  20. Y. Berbar, M. Amara, and H. Kerdjoudj, Desalination., 223, 238 (2008). https://doi.org/10.1016/j.desal.2007.01.218
  21. H.-M. Park, S.-G. Park, C. W. Hwang, and T. S. Hwang, J. Memb. Sci., 447, 253 (2013). https://doi.org/10.1016/j.memsci.2013.06.058
  22. C. W. Hwang, H.-M. Park, C. M. Oh, T. S. Hwang, J. Shim, and C.-S. Jin, J. Memb. Sci., 468, 98 (2014). https://doi.org/10.1016/j.memsci.2014.05.050
  23. A. Bobrowski and B. Grabowska, Metall. Foundry Eng., 38, 73 (2012). https://doi.org/10.7494/mafe.2012.38.1.73
  24. A. Shoaib, N. Akhtar, and N. A. Aftab, Pakistan J. Phytopathol., 25, 105 (2013).
  25. T. Sata, T. Yamaguchi, and K. Matsusaki, J. Phys. Chem., 99, 12875 (1995). https://doi.org/10.1021/j100034a028
  26. D. Clifford and W. J. Weber, Jr., React. Polym. Ion Exch. Sorbents, 1, 77 (1983). https://doi.org/10.1016/0167-6989(83)90040-5