DOI QR코드

DOI QR Code

Synthesis and Characterization of Polypropylene-grafted Graphene Oxide via "Grafting-to" Method

폴리프로필렌으로 그래프트된 그래핀 옥사이드 제조 및 특성 분석

  • Lee, Jong-Hee (Department of Polymer Science and Engineering, Korea National University of Transportation) ;
  • Oh, Chang-Ho (Department of Polymer Science and Engineering, Korea National University of Transportation) ;
  • Lim, Jung-Hyurk (Department of Polymer Science and Engineering, Korea National University of Transportation) ;
  • Kim, Kyung-Min (Department of Polymer Science and Engineering, Korea National University of Transportation)
  • 이종희 (한국교통대학교 나노화학소재공학과) ;
  • 오창호 (한국교통대학교 나노화학소재공학과) ;
  • 임정혁 (한국교통대학교 나노화학소재공학과) ;
  • 김경민 (한국교통대학교 나노화학소재공학과)
  • Received : 2014.09.25
  • Accepted : 2014.11.28
  • Published : 2015.01.25

Abstract

PP-grafted GO was prepared by the reaction of graphene oxide (GO) containing 2-bromoisobuyryl groups and polypropylene (PP) having hydroxyl groups (PP-OH) via a "grafting-to" method. GO-Br was synthesized by the reaction of GO and 2-bromoisobutyryl bromide under a basic condition. PP-MAH was reacted with ethanolamine to produce PP-OH. The melting temperature of PP-grafted GO was shifted to the higher temperature than that of PP-OH. Also, the thermal stability of PP-grafted GO was increased as compared to PP-OH and GO. These results demonstrated that the grafted coating polymer PP was effective for enhancing the thermal stability of GO. The higher surface roughness of PP-grafted GO was resulted from the chemical attachment of PP on the surface of GO. The characterization of PP-grafted GO was conducted from Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and scanning electron microscope (SEM).

폴리프로필렌(PP)으로 그래프트된 그래핀 옥사이드(PP-grafted GO)는 2-bromoisobutyryl 그룹을 가진 GO(GO-Br)와 하이드록시 그룹을 가진 PP(PP-OH)와의 "grafting-to" 화학반응을 통하여 제조하였다. GO-Br은 GO와 2-bromoisobutyryl bromide를 염기촉매 하에서 반응시켜 얻을 수 있었고, PP-OH는 maleic anhydride가 그래프트된 PP(PP-MAH)와 ethanolamine과 반응하여 제조하였다. 제조된 PP-grafted GO는 PP-OH에 비하여 녹는점이 높은 온도로 이동하였고, 열적 안정성은 GO와 PP-OH에 비하여 우수한 것을 확인하였다. 이러한 결과는 그래프트된 PP 고분자가 GO의 열적 안정성을 향상시키는 것으로 판단된다. 또한 PP-grafted GO의 표면은 GO-Br에 비하여 거칠기가 증가되는 것을 확인하여 PP가 GO 표면에 화학적으로 결합한 것을 알 수 있었다. 제조된 PP-grafted GO의 분석은 FTIR, Raman, DSC, TGA, SEM과 같은 다양한 분석장비를 이용하여 수행하였다.

Keywords

References

  1. Y. Lee, S. Bae, H. Jang, S. Jang, S. E. Zhu, S. H. Kim, Y. I. Song, B. H. Hong, and J. H. Ahn, Nano Lett., 10, 490 (2010). https://doi.org/10.1021/nl903272n
  2. Q. Wu, Y. X. Xu, Z. Y. Yao, A. R. Liu, and G. Q. Shi, ACS Nano, 4, 1963 (2010). https://doi.org/10.1021/nn1000035
  3. H. L. Wang, L. F. Cui, Y. A. Yang, H. S. Casalongue, J. T. Robbinson, Y. Y. Liang, Y. Cui, and H. J. Dai, J. Am. Chem. Soc., 132, 13978 (2010). https://doi.org/10.1021/ja105296a
  4. H. Kim, A. A. Abdala, and C. W. Macosko, Macromolecules, 43, 6515 (2010). https://doi.org/10.1021/ma100572e
  5. T. Kuila, P. Khanra, A. K. Mishra, N. H. Kim, and J. H. Lee, Polym Test., 31, 282 (2012). https://doi.org/10.1016/j.polymertesting.2011.12.003
  6. Z. Liu, J. Liu, L. Cui, R. Wang, X. Luo, C. J. Barrow, and W. Yang, Carbon, 51, 148 (2013). https://doi.org/10.1016/j.carbon.2012.08.023
  7. K. M. Kim and Y. Chujo, J. Mater. Chem., 13, 1384 (2003). https://doi.org/10.1039/b211030j
  8. K. M. Kim and Y. Chujo, J. Polym. Sci. Part A: Polym. Chem., 39, 4035 (2001). https://doi.org/10.1002/pola.10048
  9. S. Luecke and K. Stoppek-Langner, Appl. Aurf. Sci., 144, 713 (1999).
  10. J. H. Jeon, J. H. Lim, and K. M. Kim, Polymer, 50, 4488 (2009). https://doi.org/10.1016/j.polymer.2009.07.033
  11. J. H. Lim, Y. W. Ko, K. Y. Kim, and K. M. Kim, Polymer(Korea), 36, 656 (2012).
  12. J. H. Jeon, S. H. Lee, J. H. Lim, and K. M. Kim, J. Appl. Polym. Sci., 124, 3064 (2012). https://doi.org/10.1002/app.35340
  13. S. H. Lee, J. H. Lim, and K. M. Kim, J. Appl. Polym. Sci., 124, 3792 (2012). https://doi.org/10.1002/app.35389
  14. J. H. Lee, J. H. Nam, J. H. Lim, S. C. Moon, K. Y. Kim, and K. M. Kim, Compos. Interfaces, 9, 583 (2013).
  15. D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, and J. M. Tour, ACS Nano, 4, 4806 (2010). https://doi.org/10.1021/nn1006368
  16. S. H. Lee, D. R. dreyer, J. H. An, A. Velamakanni, R. D. Piner, S. J. Park, Y. Zhu, S. O. Kim, C. W. Bielawski, and R. S. Ruoff, Macromol. Rapid Commun., 31, 281 (2010). https://doi.org/10.1002/marc.200900641
  17. D. Wang, X. Zhang, J. W. Zha, J. Zhao, Z. M. Dang, and G. H. Hu, Polymer, 54, 1916 (2013). https://doi.org/10.1016/j.polymer.2013.02.012
  18. N. Wu, X. She, D. Yang, X. Wu, F. Su, and Y. Chen, J. Mater. Chem., 22, 17254 (2012). https://doi.org/10.1039/c2jm33114d
  19. B. Yuan, C. Bao, L. Song, N. Hong, K. M. Liew, and Y. Hu, Chem. Eng. J., 237, 411 (2014). https://doi.org/10.1016/j.cej.2013.10.030

Cited by

  1. Flexible free-standing composite films having 3D continuous structures of hollow graphene ellipsoids vol.23, pp.6, 2015, https://doi.org/10.1007/s13233-015-3072-7