DOI QR코드

DOI QR Code

콘크리트교를 지나는 철도 차량의 환경 소음 예측 연구

Prediction of the Environmental Noise Level of Railway Cars Crossing a Concrete Bridge

  • 장승호 (한국철도기술연구원 교통환경연구팀)
  • 투고 : 2014.09.12
  • 심사 : 2014.11.07
  • 발행 : 2015.01.31

초록

국내 철도의 환경 소음 예측을 위해서 기존에는 총합 소음도의 거리별 경험식에 기초한 모델을 이용하였던 바, 교량 주변 소음도를 계산하는 데에도 거리만의 함수를 이용하였다. 그러나 콘크리트교에서는 수음점의 거리뿐만 아니라 위치에 따라서도 소음도가 변화한다. 본 논문에서는 철도 콘크리트교에서 교량 상판에 의한 회절 및 지면 효과를 고려한 소음전파 예측모델을 도출하였으며, 이때 ISO 9613-2의 소음 전파 모델을 이용하였다. 고속철도 콘크리트 교 주변 소음도에 대한 예측값을 실제 측정결과와 비교하였으며, 그 결과 본 예측 모델이 비교적 작은 오차를 냄을 확인하였다.

In the conventional model for the prediction of the railway environmental noise, one used an empirical formula of the total noise level at specific distances. Only a function of the distance to the source was also used to calculate the noise level near the railway bridges. However, the noise varies depending on the position of the receiver as well as the distance from the source especially at concrete bridges. In this paper, a noise propagation model in the railway concrete bridge was derived by considering the diffraction at the bridge deck and the ground effect and applying the ISO 9613-2 noise propagation model. We compared the predicted and measured values of environmental noise at a high-speed railway bridge, and it was confirmed that this prediction model gives relatively small errors.

키워드

참고문헌

  1. ISO 9613-2, Acoustics - Attenuation of sound during propagation outdoors - Part 2: General method of calculation, 1996.
  2. Project Report, "Establishment of railroad noise monitoring network" (in Korean), National Institute of Environmental Research, 2002.
  3. Project Report, "Study on the prediction of the environmental effects for planning the railway noise and vibration measures" (in Korean), Korea Railroad Research Institute, 2013.
  4. U. Moehler, U. J. Kurze, M. Liepert, and H. Onnich, " The new German prediction model for railway noise "Schall 03 2006": an alternative method for the harmonized calculation method proposed in the EU directive on environmental noise," Acta Acustica 94, 48-552 (2008). https://doi.org/10.3813/AAA.918007
  5. Schall 03 2006, Richtlinie zur Berechnung der Schallimmissionen von Eisenbahnen und Straßenbahnen (in German), Entwurf, Stand: 22.11.2006.
  6. M. Hecht, J. M. Wunderli, T. Thron, and D. Sehu, "sonRAILThe new Swiss calculation model for railway noise," Proc. of 10th International Workshop on Railway Noise, 559-566 (2010).
  7. sonRAIL, Projektdokumentation, Band 1: Dokumentation, externer Anhang (in German), BAFU, EMPA, TU Berlin, PROSE AG, LCC, 29. Marz 2010.
  8. S. Jang and E. Jang, "Study on the noise source modeling and the source strength estimation of Mugungwha trains running on the conventional railway" (in Korean), Trans. KSNVE, 23(11), 1020-1026 (2013). https://doi.org/10.5050/KSNVE.2013.23.11.1020
  9. J. G. Walker, N. S. Ferguson, and M. G. Smith, "An investigation of noise from trains on bridges," J. Sound Vib. 193(1), 307-314 (1996). https://doi.org/10.1006/jsvi.1996.0271
  10. K. Attenborough, K. M. Li, and K. Horoshenkov, Predicting outdoor sound (Taylor & Francis, New York, 2007), pp. 32-39.
  11. S. Jang and J. Ryue, "A study on the rolling noise model using the analysis of wheel and rail vibration characteristics" (in Korean), J. Kr. Soc. for Railway 16, 175-182 (2013). https://doi.org/10.7782/JKSR.2013.16.3.175
  12. S. Jang, W. Jeong, J. Ryue, and H. Koh, "Analysis of rolling noise using the measurement of acoustic roughness on the rail and wheel surfaces" (in Korean), Proc. of Acoust. Soc. Kr, 245-249 (2013).