DOI QR코드

DOI QR Code

Shear Strain Big-Bang of RC Membrane Panel Subjected to Shear

순수전단이 작용하는 RC막판넬의 전단변형률 증폭

  • 정제평 (호남대학교 토목환경공학과)
  • Received : 2014.08.14
  • Accepted : 2014.12.14
  • Published : 2015.02.01

Abstract

Recently, nine $1397{\times}1397{\times}178mm$ RC panels were tested under in-plane pure-shear monotonic loading condition using the Panel Element Tester by Hsu (1997, ACI). By combining the equilibrium, compatibility, and the softened stress-strain relationship of concrete in biaxial state, Modern Truss Model (MCFT, RA-STM) are capable of producing the nonlinear analysis of RC membrane panel through the complicated trial-and-error method with double loop. In this paper, an efficient algorithm with one loop is proposed for the refined Mohr compatibility Method based on the strut-tie failure criteria. This algorithm can be speedy calculated to analyze the shear history of RC membrane element using the results of Hsu test. The results indicate that the response of shear deformation energy at Big Bang of shear strain significantly influenced by the principal compressive stress-strain (crushing failure).

최근 Hsu는 전단시험장치를 이용해 순수전단이 작용하는 9개 RC패널요소의 전단시험을 수행하였다(ACI 1997). 최신 트러스모델(수정압축장이론, 회전각연성트러스모델)은 평형조건과 적합조건 그리고 2축 상태에서 RC 막판넬의 연성 응력-변형률 관계를 이용하여 2중 루프의 시행착오방법으로 복잡한 비선형해석을 수행하고 있다. 본 연구는 스트럿과 타이의 파괴기준에 기반한 개선된 모어변형적합방법을 사용해 효율적인 알고리즘을 제안하였고, 이 알고리즘을 이용하여 Hsu가 실험한 전단이력 해석을 빠른 수렴속도로 개선한 것이다. 해석결과에 의하면 전단변형률 증폭상태의 전단변형에너지는 주압축 응력-변형률에 크게 지배받는 것으로 나타났다.

Keywords

References

  1. AASHTO LRFD (2012). "Bridge design specification and commentary." First Edition, American Association of State Highway and Transportation Officials, Washington, D.C, pp. 1091-1130.
  2. ASCE-ACI Committee 426 (1973). "The shear strength of reinforced concrete members." Journal of Structural Division, ASCE, Vol. 99, No. 6, pp. 1091-1187.
  3. ASCE-ACI Committee 445 (1998). "Recent approaches to shear design of structural concrete." Journal of Structural Engineering, ASCE, Vol. 124, No. 5, pp. 1375-1417. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:12(1375)
  4. CEB/FIP (2010). CEB-FIP model code 2010 for concrete structures, Bulletin d' Information, pp. 256-320.
  5. Cha, Y. K. and Kim, H. S. (2010). "Nonlinear analysis of stress-strain for RC panel subjected to shear." Journal of Korea Structure Diagnosis Institute, Vol. 14, No. 1, pp. 175-181.
  6. Collins, M. P. (1996). "A General shear design method." ACI Structural Journal, Vol. 93, No. 1, pp. 36-45.
  7. Eurocode 2 (1992). Design of concrete structures-part I, General Rules and Rules for Buildings, British Standard Institution, London, pp. 102-250.
  8. Hsu, T. T. C. (1991). Unified theory of reinforced concrete, CRC Press, Boca Raton, Fla. pp. 256-360.
  9. Hsu, T. T. C. and Li-Xin, B. Z. (1997). "Nonlinear analysis of membrane elements by fixed-angle softened-truss model." ACI Structural Journal, Vol. 94, No. 5, pp. 483-492.
  10. Vecchio, F. J. and Collins, M. P. (1986). "The modified compression field theory for reinforced concrete elements subjected to shear." ACI Structural Journal, Vol. 83, No. 2, pp. 219-231.
  11. Vecchio, F. J., Susetyo, J. and Gauvreau, P. (2011). "Effectiveness of steel fiber as minimum shear reinforcement." ACI Structural Journal, Vol. 108, No. 4, pp. 488-496.