DOI QR코드

DOI QR Code

Fracture Flow of Radionuclides in Unsaturated Conditions at LILW Disposal Facility

불포화 암반 파쇄대를 통한 핵종 이동

  • Kim, Won-Seok (Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Jungjin (Pohang University of Science and Technology (POSTECH)) ;
  • Ahn, Jinmo (Pohang University of Science and Technology (POSTECH)) ;
  • Nam, Seongsik (Pohang University of Science and Technology (POSTECH)) ;
  • Um, Wooyong (Pohang University of Science and Technology (POSTECH))
  • Received : 2015.08.19
  • Accepted : 2015.08.30
  • Published : 2015.08.31

Abstract

Adsorption experiments for radionuclides such as $^3H$, $^{90}Sr$ and $^{99}Tc$ were conducted using fractured rock collected in unsaturated zone. The released radionuclide through artificial barrier from the near surface repository can be transported by the flow of rainfall or pore water through fractures in unsaturated zone and reach to groundwater flow. Therefore, it is important to investigate transport behavior (retardation) of radionuclides through fractured rock for the safety assessment and long-term performance of repository. Fractured rock samples were collected and characterized by X-ray microtomography (XMT) analysis, which can be used to develop a more robust unsaturated fracture transport model. When fracture-filling materials are exist, distribution coefficient of $^{90}Sr$ is higher than without fracture-filling materials. In this study, batch sorption distribution coefficient ($K_d$) of radionuclide was determined and used to increase our understanding of radionuclide retardtion through fracture-filling materials.

불포화대 암반 단열에서 방사성 핵종인 $^3H$, $^{90}Sr$ and $^{99}Tc$의 흡착실험이 진행되었다. 천층처분시설의 인공방벽을 통과해 누출된 방사성 핵종은 빗물이나 공극수에 의해 불포화대 암반 단열을 통하여 지하수로 도달하게 된다. 그러므로 처분장의 장기간 안전점검을 위해, 불포화대 암반 단열을 통한 방사성 핵종의 거동을 연구하는 것이 중요하다. 천층처분주변에서 채취된 불포화대 암반 단열 샘플을 이용하여 X-ray microtomography 분석을 수행하였고, 회분식 흡착실험을 이용하여 방사성 핵종인 $^3H$, $^{90}Sr$ and $^{99}Tc$의 흡착실험이 진행되었다. 암반 단열의 충전물질로 불석광물 및 점토광물 존재 시 중흡착성 핵종인 $^{90}Sr$의 흡착 분배계수 값이 충전물질이 존재하지 않을 때 보다 높게 나타내었다. 본 연구를 통해, 암반 단열 특성화 및 방사성 핵종의 흡착분배계수를 구했으며, 불포화대 암반 단열을 통한 핵종의 거동이 지연됨을 이해할 수 있었다.

Keywords

References

  1. Kim, Y. K., Kang, J. M. and Jung, W. J., "International Cooperation Possibility for Radioactive Waste Management in Northeast Asia," Korean Energy Economic Rev., 3(1), 71-98(2004).
  2. Choi, H. J., The Management Plan and the meaning of Wolsong Radionuclide Repository Construction," Journal of the electrical world, Special Issues, pp. 6-11(2008).
  3. Cherrey, K. D., Flury, M. and Harsh, J. B., "Nitrate and colloid transport through coarse Hanford sediments under steady state, variably saturated flow," Water Resour. Res., 39(6), 1165(2003).
  4. Rod, K. A., Um, W. and Flury, M., "Transport of Strontium and Cesium in Simulated Hanford Tank Waste Leachate through Quartz Sand under Saturated and Unsaturated Flow," Environ. Sci. Technol., 44, 8089-8094(2010). https://doi.org/10.1021/es903223x
  5. Kim, J. I., "Significance of Actinide Chemistry for the Long Term Safety of Waste Disposal," Nucl. Eng. Technol., 38 (6), 459-482(2006).
  6. Baik, M. H., Lee, S. Y., Lee, J. K., Kim, S. S., Park, C. K. and Choi, J. W., "Review and Compilation of Data on Radionuclide Migration and Retardation for the Performance Assessment of a HLW Repository in Korea," Nucl. Eng. Technol., 40(7), 63-76(2008).
  7. Chang, H. S., Um, W., Rod, K., Serne, R. J., Thompson, A., Perdrial, N., Steefel, C. I. and Chorover, J., "Strontium and Cesium Release Mechanisms during Unsaturated Flow through Waste-Weathered Hanford Sediments," Environ. Sci. Technol., 45, 8313-8320(2011). https://doi.org/10.1021/es2010368
  8. Hautojarvi, A. and Vieno, T., "Assessment of releases from a nuclear waste repository in crystalline rock," Future Groundwater Resources at Risk: Proceedings of an International Conference (FGR 94) Held at Helsinki, Finland, June 1994, IAHS Publ. no. 222(1994).
  9. Vandergraaf, T. T., "Radionuclide Migration Experiments under Laboratory Conditions," Geophys. Res. Lett., 22, 1409-1412(1995). https://doi.org/10.1029/95GL01492
  10. Vandergraaf, T. T., Drew, D. J., Archambault, D. and Ticknor, K. V., "Transport of Radionuclides in Natural Fractures: Some Aspects of Laboratory Migration Experiments," J. Contam. Hydrol., 26, 83-95(1997). https://doi.org/10.1016/S0169-7722(96)00060-5
  11. Sakamoto, Y., Nagao, S., Ogawa1, H. and Rao, R. R., "The Migration Behavior of Np (V) in Sandy Soil and Granite Media in the Presence of Humic Substances," Radiochim. Acta, 88, 651-656(2000).
  12. Li, M., Wang, T. and Teng, S., "Experimental and Numerical Investigations of Effect of Column Length on Retardation Factor Determination: A Case Study of Cesium Transport in Crushed Granite," J. Hazard. Mater., 162, 530-535 (2009). https://doi.org/10.1016/j.jhazmat.2008.05.076
  13. Baik, M. H., Lee, S. Y. and Shon, W. J., "Retention of Uranium(VI) by Laumontite, a Fracture-Filling Material of Granite," J. Radioanal. Nucl. Chem., 280, 69-77(2009). https://doi.org/10.1007/s10967-008-7446-6
  14. Baik, M. H., Lee, J. K. and Choi, J. W., "Research Status on the Radionuclide and Colloid Migration in Underground Research Facilities," J. Korean Radioact. Waste Soc., 7(4), 243-253(2009).
  15. Navakowski, K. S., Bickerton, G. and Lapcevic, P., "Interpretation of Injection-Withdrawal Tracer Experiments Conducted between Two Wells in a Large Single Fracture," J. Contam. Hydrol., 73, 227-247(2004). https://doi.org/10.1016/j.jconhyd.2004.02.001
  16. Mazurek, M., Jakob, A. and Bossart, P., "Solute Transport in Crystalline Rocks at ApoI: Geological Basis and Model Calibration," J. Contam. Hydrol., 61, 157-174(2003). https://doi.org/10.1016/S0169-7722(02)00137-7
  17. Kienzler, B., Vejmelka, P., Roer, J. and Jansson, M., "Actinide Migration in Fractures of Granite Host Rock: Laboratory and In Situ Investigations," Nucl. Technol., 165, 223-240(2009). https://doi.org/10.13182/NT09-A4088
  18. Hoehn, E., Eikenberg, J., Fierz, T., Drost, W. and Reichlmayr, E., "The Grimsel Migration Experiment: Field Injection-Withdrawal Experiments in Fractured Rock with Sorbing Tracers," J. Contam. Hydrol., 34, 85-106(1998). https://doi.org/10.1016/S0169-7722(98)00083-7
  19. Dai, Z., Wolfsberg, A., Reimus, P., Deng, H., Kwicklis, E., Ding, M., Ware, D. and Ye, M., "Identification of sorption processes and parameters for radionuclide transport in fractured rock," J. Hydro., 414-415, 516-526(2012). https://doi.org/10.1016/j.jhydrol.2011.11.032
  20. Grenier, C., Mouche, E. and Tevissen, E., "Influence of variable fracture aperture on transport of non-sorbing solutes in a fracture: A numerical investigation," J. Contam. Hydrol., 35, 305-313(1998). https://doi.org/10.1016/S0169-7722(98)00131-4
  21. Rasilainen, K., "Matrix diffusion model-In situ tests using natural analogues," Technical Research Centre of Finland, Espoo, VTT Publications, 331, 81(1997).
  22. Kohn, J. L., Dixon, K. L. and Nichols, R. L. Fractured media update. SRNL-L3200-2012-00029_R0(2012).
  23. Dixon, K. L., Estimating Hydraulic Properties For E-Area Sediments Using A Multi-Step Outflow Extraction Method. SRNL-STI-2010-00655, Rev. 0(2011).
  24. ASTM, Standard test method for distribution ratios by the short-term batch method, ASTM D4319-93 (Reapproved 2001), USA(2001).
  25. Um, W. and Papelis, C., "Metal ion sorption and desorption on zeolitized tuffs from Nevada Test Site," Environ. Sci. Technol., 38(2), 496-502(2004). https://doi.org/10.1021/es0343050
  26. Huitti, T., Hakanen, M. and Lindberg, A., "Sorption of Cesium on Olkiluoto Mica Gneiss, Granodiorite and Granite," POSIVA98-11, POSIVAOy, Helsinki(1998).
  27. Um, W., Serne, R. J., Brown, C. F. and Last, G. V., "U(VI) adsorption on 200-UP-1 aquifer sediments at the Hanford Site," J. Contam. Hydro., 93, 255-269(2007). https://doi.org/10.1016/j.jconhyd.2007.03.002
  28. Vejsada, J., "The uncertainties associated with the application of batch technique for distribution coefficients determination-A case study of cesium adsorption on four different bentonites," Appl. Radiat. Isotopes, 64, 1538-1548(2006). https://doi.org/10.1016/j.apradiso.2006.05.016
  29. Baik, M. H. and Hahn, P. S., "An experimental study on the sorption of U(VI) onto granite," J. Korean Nucl. Soc., 34, 445-454(2002).
  30. Baik, M. H., Cho, W. J. and Hahn, P. S., "A Parametric Study on the Sorption of U(VI) onto Granite," Korean Radioactive Waste Soc., 2(2), 135-143(2004).
  31. Shin, D. H., "Three Dimensional Reconstruction of Teeth using X-ray Microtomography," The Korean Academy of Conservative Dentistry, 28(6), 485-490(2003). https://doi.org/10.5395/JKACD.2003.28.6.485
  32. Krasny, J. and Sharp, J. M., "Groundwater in Fractured Rocks," Taylor & Francis Group, London, UK.(2007)
  33. Jung, H. B., Jansik, D. and Um, W., "Imaging wellbore cement degradation by Carbon Dioxide under geologic sequestration conditoins using X-ray computed microtomography," Environ. Sci. Technol., 47, 283-289(2013) https://doi.org/10.1021/es3012707
  34. Andersson, K., Torstenfelt, B. and Allard, B., "Sorption of radionuclides in geologic systems," SKBF/KBS report, Chalvers University of Technology, Gotevor, Sweden(1983).
  35. Chernjatskaja, N. B., "Strontium removal by clinoptilolite and heulandite," Radiochemisry, 27, 618(1988)
  36. MATIJASEVIC, S., DAKOVIC, A., TOMASEVIC-CANOVIC, M., STOJANOVIC, M. and ILES, D., "Uranium(VI) adsorption on surfactant modified heulandite/clinoptilolite rich tuff," J. Serb. Chem. Soc., 71(12), 1323-1331(2006) https://doi.org/10.2298/JSC0612323M
  37. Baik, M. H., Lee, S. Y. and Shon, W. J., "Retention of uranium(VI) by laumontite, a fracture-filling material of granite," J. Radioanalytical and Nuclear Chem., 280(1), 69-77(2009). https://doi.org/10.1007/s10967-008-7446-6