DOI QR코드

DOI QR Code

니켈을 함유한 콜타르 피치 결합제를 이용한 미생물연료전지 산화전극 성능개선

Improvement of Anodic Performance by Using CTP Binder Containg Nickel

  • 윤형선 (국립한국해양대학교 환경공학과) ;
  • 송영채 (국립한국해양대학교 환경공학과) ;
  • 최태선 (국립한국해양대학교 환경공학과)
  • Yoon, Hyung-Sun (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Song, Young-Chae (Department of Environmental Engineering, Korea Maritime and Ocean University) ;
  • Choi, Tae-Seon (Department of Environmental Engineering, Korea Maritime and Ocean University)
  • 투고 : 2015.09.02
  • 심사 : 2015.09.11
  • 발행 : 2015.09.30

초록

팽창흑연과 탄소나노튜브를 이용한 산화전극을 CTP에 Ni을 혼합한 결합제로 제작하였으며, 산화전극에 CTP와 Ni을 혼합한 결합제와 Nafion 결합제를 대조구로 미생물연료전지의 성능에 미치는 영향을 회분식 실험을 통하여 조사하였다. 산화전극 제작에 사용된 CTP 양이 적을수록, Ni 함량이 증가할수록 산화전극 표면에 부착성장한 미생물량이 증가하였으며, 내부저항이 감소하였다. CTP 4 g과 Ni 0.2 g을 혼합한 결합제로 제작한 산화전극의 경우 최대전력밀도는 $731.8mW/m^2$, 내부저항은 $146.19{\Omega}$이다. 대조구인 Nafion결합제로 제작한 산화전극와 비교하여 최대전력밀도는 23.68% 컸으며, 내부저항은 33.82% 낮았다. 따라서, CTP와 Ni을 혼합한 물질은 저렴하고 효율이 높은 미생물연료전지의 산화전극결합제로서 좋은 대안이 될 수 있다.

The composite anodes of expanded graphite (EG) and multiwall carbon nanotube (MWCNT) for microbial fuel cells were fabricated by using coal tar pitch (CTP) binder containing nickel (Ni), and the effect of the anodes with the binders on the performance of the MFCs were examined in a batch reactor. During the start-up of the MFCs, quick increase in voltage was observed after a short lag phase time, indicating that the CTP binder is biocompatible. The biomass attatched on the anode surface was more at higher Ni content in the binder, as well as at smaller amount of CTP binder for the fabrication of the anode. The internal resistance of the MFC was smaller for the anode with more biomass. Based on the results, the ideal combination of CTP and Ni for the CTP binder for anode was 2 g and 0.2 g, respectively. The maximum power density was $731.8mW/m^2$, which was higher 23.7% than the anode with Nafion binder as control. The CTP binder containing Ni for the fabrication of anode is a good alternative in terms of performance and economics of MFCs.

키워드

참고문헌

  1. Song, Y. C., Choi, T. S., Woo, J. H., Yoo, K., Chung, J. W., Lee, C. Y. and Kim, B., "Effect of the oxygen reduction catalyst loading method on the performance of air breathable cathodes for microbial fuel cells," J. Appl. Electrochem., 42, 391-398(2012). https://doi.org/10.1007/s10800-012-0410-8
  2. Song, Y. C., Kim, D. S. and Woo, J. H., "Effect of epoxy Mixed with Nafion solution as an anode Binder on the performance of microbial fuel cell," J. Korean Soc. Environ. Eng., 36(1), 1-6(2014). https://doi.org/10.4491/KSEE.2014.36.1.1
  3. Logan, B. E., Hamelers, B., Rozendal, R., Schroder, U., Keller, J., Freguia, S., Aelterman, P., Verstraete, W. and Rabaey, K., "Microbial fuel cells: methodology and technology," Environ. Sci. Technol., 40, 5181-5192(2006). https://doi.org/10.1021/es0605016
  4. Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. and Verstraete, W., "Biofuel Cells Select for Microbial Consortia That Self-Mediate Electron Transfer," Appl. Environ. Microbiol., 70, 5373-5382(2004). https://doi.org/10.1128/AEM.70.9.5373-5382.2004
  5. Logan, B., Cheng, S., Watson, V. and Estadt, G., "Graphite Fiber Brush Anodes for Increased Power Production in Air-Cathode Microbial Fuel Cells," Environ. Sci. Technol., 41, 3341-3346(2007). https://doi.org/10.1021/es062644y
  6. Villano, M., Scardala, S., Aulenta, F. and Majone, M., "Carbon and nitrogen removal and enhanced methane production in a microbial electrolysis cell," Bioresour. Technol., 130, 366-371(2013). https://doi.org/10.1016/j.biortech.2012.11.080
  7. Wang, A., Liu, W., Cheng, S., Xing, D., Zhou, J. and Logan, B. E., "Source of methane and methods to control its formation in single chamber microbial electrolysis cells," Int. J. Hydro. Energy, 34, 3653-3658(2009). https://doi.org/10.1016/j.ijhydene.2009.03.005
  8. Wang, X., Feng, Y., Liu, J., Shi, X., Lee, H., Li, N. and Ren, N., "Power generation using adjustable Nafion/PTFE mixed binders in air-cathode microbial fuel cells," Biosens. Bioelectron., 26, 946-948(2010). https://doi.org/10.1016/j.bios.2010.06.026
  9. Han, Y.-J., Kim, J., Yeo, J.-S., An, J. C., Hong, I.-P., Nakabayashi, K., Miyawaki, J., Jung, J.-D. and Yoon, S.-H., "Coating of graphite anode with coal tar pitch as an effective precursor for enhancing the rate performance in Li-ion batteries: Effects of composition and softening points of coal tar pitch," Carbon, 94, 432-438(2015). https://doi.org/10.1016/j.carbon.2015.07.030
  10. Liu, X., Du, X., Wang, X., Li, N., Xu, P. and Ding, Y., "Improved microbial fuel cell performance by encapsulating microbial cells with a nickel-coated sponge," Biosens. Bioelectron., 41, 848-851(2013). https://doi.org/10.1016/j.bios.2012.08.014
  11. Wang, K., Liu, Y., Chen, S., "Improved microbial electrocatalysis with neutral red immobilized electrode," J. Power Sour., 196, 164-168(2011). https://doi.org/10.1016/j.jpowsour.2010.06.056
  12. Huang, J., Zhu, N., Yang, T., Zhang, T., Wu, P. and Dang, Z., "Nickel oxide and carbon nanotube composite (NiO/CNT) as a novel cathode non-precious metal catalyst in microbial fuel cells," Biosens. Bioelectron., 72, 332-339(2015). https://doi.org/10.1016/j.bios.2015.05.035

피인용 문헌

  1. Evaluation of Biogas Production Rate by using Various Electrodes Materials in a Combined Anaerobic Digester and Microbial Electrochemical Technology (MET) vol.39, pp.2, 2017, https://doi.org/10.4491/KSEE.2017.39.2.82
  2. Effect of Electrode Configuration on the Substrate Degradation in Microbial Fuel Cells vol.39, pp.8, 2017, https://doi.org/10.4491/KSEE.2017.39.8.489