DOI QR코드

DOI QR Code

수처리용 세라믹 기반 그래핀 맴브레인의 합성 및 물질이동특성

Fabrication of Ceramic-based Graphene Membrane (CbGM) and Its Mass Transport Behavior for Water Treatment

  • 김창민 (글로벌 담수화 연구센터) ;
  • 박기범 (글로벌 담수화 연구센터) ;
  • 김광수 (한국건설기술연구원 환경플랜트 연구소) ;
  • 김인수 (글로벌 담수화 연구센터)
  • Kim, Chang-Min (Global Desalination Research Center (GDRC)) ;
  • Park, Ki-Bum (Global Desalination Research Center (GDRC)) ;
  • Kim, Kwang-Soo (Environmental Engineering Research Division, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • Kim, In S. (Global Desalination Research Center (GDRC))
  • 투고 : 2015.04.07
  • 심사 : 2015.11.30
  • 발행 : 2015.11.30

초록

본 연구에서는 막 기반 수처리 기술의 핵심인 막 성능 및 특성을 혁신적으로 개선시키기 위한 새로운 형태의 막으로서 그래핀과 세라믹을 결합하는 세라믹 기반 그래핀 막(Ceramic-based graphene membrane (CbGM))을 만들고, 막에서 일어나는 물질 이동 특성을 파악하였다. 수투과 및 염 제거의 역할을 하는 활성층으로서 그래핀이 사용되었으며, 간단한 Filtration-assisted assembly (FAA) 방법을 도입하여 막을 합성하였다. 합성한 막의 표면 형태 및 특성 분석을 위해 주사전자 현미경 및 접촉각을 분석하였으며, 막 성능 및 특성 파악을 위해 3가지 용질(i.e., NaCl, $MgCl_2$, $Na_2SO_4$)을 회분식 정삼투 시스템에서 용질 이동을 측정하였다. 표면 형태 특성 분석과 물질 이동 결과를 통해, 그래핀 층의 두께 보다는, 활성층을 구성하는 그래핀 조각들 사이의 교합(Interlocking)이 막에 선택성 부여함에 있어서 가장 중요함을 확인하였다. 또한, 농도차를 구동력으로 하는 막 공정에 CbGM을 적용하였을 때, 수중의 음이온과 양이온의 최외각 전하비($Z^-/Z^+$)값이 증가할수록 용질 이동이 비례적으로 촉진되었으므로, CbGM의 표면이 양으로 하전되어 있으며, 이것이 전하된 물질의 이동에 매우 큰 영향을 끼친다는 것을 확인하였다.

As a novel water treatment membrane, concept of ceramic-based graphene membrane (CbGM) was suggested, and its mass transport behavior was investigated. The selectivity of CbGM was given by graphene material which is consisting of active layer, only transmitting water, but rejecting salts. Filtration-assisted assembly methods was employed as a facile method to fabricate CbGM. Surface morphology and characteristics of CbGM were analyzed by scanning electron microscopy (SEM) and contact angle. In addition, three different kinds of solutes (i.e., NaCl, $MgCl_2$, $Na_2SO_4$) were tested in batch forward osmosis system to confirm the mass transport behavior. Through surface morphology analysis and mass transport behavior, it was revealed that interlocking between graphene layers is very important, rather than thickness of laminated graphene layers, in terms of selectivity to CbGM. All the anions in each solute showed faster transport than those of cations. In addition, solutes which have high ion valence charge ratio of anion to cation ($Z^-/Z^+$) was easier to be passed through CbGM. It indirectly implied that the surface charge of CbGM appear to be positive. In addition, It showed that surface charge of CbGM has a great role on mass transport, in particular, transport of matter having charges, generally ions.

키워드

참고문헌

  1. Hong, S. K., Lee, S. H., Kim, J. H., Kim, J. H. and Ju, Y. G., "Evolution of RO Process for Green Future," Perspec. Ind. Chem., The Korean Soc. Ind. Eng. Chem., 14(6), 9-20(2011).
  2. Qin, W., Lei, B., Peng, C. and Wu, J., "Corrosion resistance of ultra-high purity porous alumina ceramic support," Mater. Lett., 144, 74-77(2015). https://doi.org/10.1016/j.matlet.2014.12.082
  3. Pendergast, M. M. and Hoek, E. M. V., "A review of water treatment membrane nanotechnologies," Energy Environ. Sci., 4, 1946-1971(2011). https://doi.org/10.1039/c0ee00541j
  4. Wehling, J., Koser, J., Lindner, P., Luder, C., Beutel, S., Kroll, S. and Rezwan, K., "Silver nanoparticle-doped zirconia capillaries for enhanced bacterial filtration," Mater. Sci. Eng., C, 48, 179-187(2015). https://doi.org/10.1016/j.msec.2014.12.001
  5. Balandin, A. A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F. and Lau, C. N., "Superior thermal conductivity of single-layer graphene," Nano Lett., 8, 902-907(2008). https://doi.org/10.1021/nl0731872
  6. Bolotin, K. I., Sikes, K. J., Jiang, Z., Klima, M., Fudenberg, G., Hone, J., Kim, P. and Stormer, H. L., "Ultrahigh electron mobility in suspended graphene," Solid State Commun., 146, 351-355(2008). https://doi.org/10.1016/j.ssc.2008.02.024
  7. Du, X., Skachko, I., Barker, A. and Andrei, E. Y., "Approaching ballistic transport in suspended graphene," Nature Nanotechnol., 3, 491-495(2008). https://doi.org/10.1038/nnano.2008.199
  8. Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K. and Novoselov, K. S., "Control of graphene's properties by reversible hydrogenation: Evidence for graphane," Science, 323, 610-613(2009). https://doi.org/10.1126/science.1167130
  9. Lee, C., Wei, X., Kysar, J. W. and Hone, J., "Measurement of the elastic properties and intrinsic strength of monolayer graphene," Science, 321, 385-388(2008). https://doi.org/10.1126/science.1157996
  10. Morozov, S. V., Novoselov, K. S., Katsnelson, M. I., Schedin, F., Elias, D. C., Jaszczak, J. A. and Geim, A. K., "Giant intrinsic carrier mobilities in graphene and its bilayer," Phys. Rev. Lett., 100, (2008).
  11. Nair, R. R., Blake, P., Grigorenko, A. N., Novoselov, K. S., Booth, T. J., Stauber, T., Peres, N. M. R. and Geim, A. K., "Fine structure constant defines visual transparency of graphene," Science, 320, 1308(2008). https://doi.org/10.1126/science.1156965
  12. Pisana, S., Lazzeri, M., Casiraghi, C., Novoselov, K. S., Geim, A. K. Ferrari, A. C. and Mauri, F., "Breakdown of the adiabatic Born-Oppenheimer approximation in graphene," Nature Mater., 6, 198-201(2007). https://doi.org/10.1038/nmat1846
  13. Schedin, F., Geim, A. K., Morozov, S. V., Hill, E. W., Blake, P., Katsnelson, M. I. and Novoselov, K. S., "Detection of individual gas molecules adsorbed on graphene," Nature Mater., 6, 652-655(2007). https://doi.org/10.1038/nmat1967
  14. Chen, J., Peng, H., Wang, X., Shao, F., Yuan, Z. and Han, H., "Graphene oxide exhibits broad-spectrum antimicrobial activity against bacterial phytopathogens and fungal conidia by intertwining and membrane perturbation," Nanoscale, 6, 1879-1889(2014). https://doi.org/10.1039/C3NR04941H
  15. Suk, M. E. and Aluru, N. R., "Water transport through ultrathin graphene," J. Phys. Chem. Lett., 1, 1590-1594(2010). https://doi.org/10.1021/jz100240r
  16. Cicero, G., Grossman, J. C., Schwegler, E., Gygi, F. and Galli, G., "Water confined in nanotubes and between graphene sheets: A first principle study," J. Am. Chem. Soc., 130, 1871-1878(2008). https://doi.org/10.1021/ja074418+
  17. Koenig, S. P., Wang, L., Pellegrino, J. and Bunch, J. S., "Selective molecular sieving through porous graphene," Nature Nanotechnol., 7, 728-732(2012). https://doi.org/10.1038/nnano.2012.162
  18. Li, H., Song, Z., Zhang, X., Huang, Y., Li, S., Mao, Y., Ploehn, H. J., Bao, Y. and Yu, M., "Ultrathin, molecularsieving graphene oxide membranes for selective hydrogen separation," Science, 342, 95-98(2013). https://doi.org/10.1126/science.1236686
  19. Dikin, D. A., Stankovich, S., Zimney, E. J., Piner, R. D., Dommett, G. H. B., Evmenenko, G., Nguyen, S. T. and Ruoff, R. S., "Preparation and characterization of graphene oxide paper," Nature, 448, 457-460(2007). https://doi.org/10.1038/nature06016
  20. Hummers Jr, W. S., and Offeman, R. E., "Preparation of graphitic oxide," J. Am. Chem. Soc., 80, 1339(1958). https://doi.org/10.1021/ja01539a017
  21. Han, Y., Xu, Z. and Gao, C. "Ultrathin graphene nanofiltration membrane for water purification," Adv. Funct. Mater., 23, 3693-3700(2013). https://doi.org/10.1002/adfm.201202601
  22. Pauling, L., "Nature of the Chemical Bond," Cornell University Press, Ithaca, N. Y., p. 120(1948).
  23. Baslo F. and Pearson, R. G., "Mechanism of Inorganic Reactions," John Wiley and Sons, N. Y., p. 66(1958).