DOI QR코드

DOI QR Code

남조류에서 발생하는 독소의 문제점과 대책

An Overview of Problems Cyanotoxins Produced by Cyanobacteria and the Solutions Thereby

  • 전봉석 (신슈대학교 이학부 물질순환학 코스) ;
  • 한지선 (신슈대학교 이학부 물질순환학 코스) ;
  • 김석구 (한국건설기술연구원 환경.플랜트연구소) ;
  • 안재환 (한국건설기술연구원 환경.플랜트연구소) ;
  • 오혜철 (한국건설기술연구원 환경.플랜트연구소) ;
  • 박호동 (신슈대학교 이학부 물질순환학 코스)
  • Jeon, Bong-seok (Department of Environmental Sciences, Faculty of Science, Shinshu University) ;
  • Han, Jisun (Department of Environmental Sciences, Faculty of Science, Shinshu University) ;
  • Kim, Seog-Ku (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Ahn, Jae-Hwan (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Oh, Hye-Cheol (Environmental and Plant Engineering Research Institute, Korea Institute of Civil Engineering and Building Technology) ;
  • Park, Ho-Dong (Department of Environmental Sciences, Faculty of Science, Shinshu University)
  • 투고 : 2015.11.29
  • 심사 : 2015.12.15
  • 발행 : 2015.12.31

초록

녹조현상을 형성하는 유독남조류는 세계 각지의 부영양화 호수에서 장기간 관찰되고 있다. 남조에 의해 생산되는 독소는 크게 신경독(anatoxin-a, anatoxin-a(s), saxitoxin)과 간독(microcystin, nodularin, cylindrospermopsin)으로 나뉜다. Microcystin은 남조세포내에 존재하며, 세포막이 손상되면 외부로 방출된다고 사료되며, 용출된 microcystin은 생물에 악영향을 끼치며, 호수, 하천 및 해양의 수생생물에 microcystin이 축적된다고 알려져 있다. 자연계에서는 포식자에 의한 남조세포의 섭식 또는 남조세포로부터 용출된 microcystin의 미생물에 의한 분해에 의해 microcystin의 제거가 가능하지만, 정수처리 과정에서는 microcystin을 분해하는 미생물이 존재하지 않으므로, 세포제거를 위해 황산구리를 사용할 경우 대량의 microcystin이 용출되므로 주의가 필요하다. 지금까지의 보고에 의하면 세포 밖으로 용출된 micorcystin을 제거하는 기술은 물리, 화학 및 생물학적 방법이 있다. 녹조현상의 방지는 그 발생의 원인인 호수 외로부터 유입되는 영양염류인 질소와 인의 감소가 기본이지만, 부영양호의 경우 이미 유입된 영양염류를 축적하고 있으므로 투자에 비해 효과는 높지 않다. 호수가 본래의 상태일 때 부영양화 된다면, 호수의 연안부에 수생식물의 침입이 일어나고, 식물플랑크톤에 의한 조류 번무 현상은 보이지 않는 것이 보통이다. 이러한 관점으로 녹조현상 발생방지를 위해서는 일단 호수 연안을 정상적인 상태로 복원할 필요가 있다.

Cyanobacteria frequently dominate the freshwater phytoplankton community in eutrophic waters. Cyanotoxins can be classified according to toxicity as neurotoxin (Anatoxin-a, Anatoxin-a(s), Saxitoxins) or hepatotoxin (microcystins, nodularin, cylindrospermopsin). Microcystins are present within cyanobacterial cells generally, and they are extracted by the damage of cell membrane. It has been reported that cyanotoxins caused adverse effects and they are acculmulated in aquatic oganisms of lake, river and ocean. In natural, microcystins are removed by biodegradation of microorganisms and/or feeding of predators. However, in process of water treatment, the use of copper sulfate to remove algal cells caused extraction of a mess of microcystins. Microcysitns are removed by physical, chemical and biological methods according to reports. The reduction of nutrients (N and P) inflow is basic method of prevention of cyanobacteria bloom formation. However, it is less effective than investigation because nutrients already present in the eutrophic lake. In natural lake, cyanobacteria bloom are not formed because macrophytes invade from coastal lake by eutrophication. Therefore, a coastal lake has to recover to prevent of cyanobacteria bloom formation.

키워드

참고문헌

  1. Dawson, R. M., "The toxicology of microcystins," Toxicon, 36(7), 953-962(1998). https://doi.org/10.1016/S0041-0101(97)00102-5
  2. Carmichael, W., "Health effects of toxin-producing cyanobacteria: The CyanoHABs," Hum. Ecol. Risk Assess.: An Int. J., 7(5), 1393-1407(2001). https://doi.org/10.1080/20018091095087
  3. Harada, K., Ohtani, I., Iwamoto, K., Suzuki, M., Watanabe, M. F., Watanabe, M. and Terao, K., "Isolation of cylindrospermopsin from a cyanobacterium Umezakia natans and its screening method," Toxicon, 32(1), 73-84(1994). https://doi.org/10.1016/0041-0101(94)90023-X
  4. Matsunaga, H., Harada, K., Senma, M., Ito, Y., Yasuda, N., Ushida, S. and Kimura, Y., "Possible cause of unnatural mass death of wild birds in a pond in Nishinomiya, Japan: Sudden appearance of toxic cyanobacteria," Nat. Toxins, 7(2), 81-84(1999). https://doi.org/10.1002/(SICI)1522-7189(199903/04)7:2<81::AID-NT44>3.0.CO;2-O
  5. Nakamura, K., Watanabe, K., Ishikawa, K., Kumagai, M., Miyabara, Y., Inuzuka, R., Yokota, K., Oguma, K. and Park, H., "Accumulation of microcystin-LR in dead domestic duck at Iso harbor, Lake Biwa, Japan (in Japanese)," Japanese J. Omithol., 62(2), 153-165(2013).
  6. Carmichael, W., "Cyanobacteria secondary metabolites-the cyanotoxins," J. Appl. Microbiol., 72(6), 445-459(1992). https://doi.org/10.1111/j.1365-2672.1992.tb01858.x
  7. MacKintosh, C., Beattie, K. A., Klumpp, S., Cohen, P. and Codd, G. A., "Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants," FEBS Lett., 264(2), 187-192(1990). https://doi.org/10.1016/0014-5793(90)80245-E
  8. Kondo, F., Ikai, Y., Oka, H., Okumura, M., Ishikawa, N., Harada, K., Matsuura, K., Murata, H. and Suzuki, M., "Formation, Characterization, and Toxicity of the Glutathione and Cysteine Conjugates of Toxic Heptapeptide Microcystins," Chem. Res. Toxicol., 5(5), 591-596(1992). https://doi.org/10.1021/tx00029a002
  9. Park, H., "Studies on the Toxins Produecd by Blue-Green Algae (in Japanese)," J. JPN Soc. Wat. Environ., 37(5), 169-174 (2014). https://doi.org/10.2965/jswe.37.169
  10. Xie, L., Hanyub, T., Futatsugi, N., Komatsuc, M., Steinmand, A. D. and Park H., "Inhibitory effect of naringin on microcystin-LR uptake in the freshwater snail Sinotaia histrica," Environ. Toxicol. Phar., 38, 430-437(2014). https://doi.org/10.1016/j.etap.2014.07.006
  11. Harada, K., Nagai, H., Kimura, Y., Suzuki, M., Park, H., Watanabe, M. F., Luukkainen, R., Sivonen, K. and Carmichael, W. W., "Liquid chromatography/mass spectrometric detection of anatoxin-a, a neurotoxin from cyanobacteria," Tetrahedron, 49(41), 9251-9260(1993). https://doi.org/10.1016/0040-4020(93)80011-H
  12. Park, H., Watanabe, M. F., Harada, K., Nagai, H., Suzuki, M., Watanabe, M. and Hayashi, H., "Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters," Nat. Toxins, 1(6), 353-360(1993). https://doi.org/10.1002/nt.2620010606
  13. Swanson, K. L., Allen, C. N., Aronstam, R. S., Rapoport, H. and Albuquerque, E. X., "Molecular mechanisms of the potent and stereospecific nicotinic receptor agonist (+)-anatoxin-a," Mol. Pharmacol., 29(3), 250-257(1986).
  14. Falconer, I. R. and Humpage A. R., "Cyanobacterial (bluegreen algal) toxins in water supplies: Cylindrospermopsins," Environ. Toxicol., 21(4), 299-304(2006). https://doi.org/10.1002/tox.20194
  15. Hawkins, P. R., Runnegar, M. T. C., Jackson, A. R. and Falconer, I. R., "Severe hepatotoxicity caused by the tropical cyanobacterium (blue-green alga) Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju isolated from a domestic supply reservoir," Appl. Environ. Microbiol., 50 (5), 1292-1295(1985).
  16. Banker, R., Carmeli, S., Hadas, O., Teltsch, B., Porat, R. and Sukenik, A., "Identification of cylindrospermopsin in the cyanobacterium Aphanizomenon ovalisporum (Cyanophyceae) isolated from lake Kinneret, Israel," J. Phycol., 33(4), 613-616(1997). https://doi.org/10.1111/j.0022-3646.1997.00613.x
  17. Schembri, M. A., Neilan, B. A. and Saint, C. P., "Dentification of genes implicated in toxin production in the cyanobacterium Cylindrospermopsis raciborskii," Environ. Toxicol., 16(5), 413-421(2001). https://doi.org/10.1002/tox.1051
  18. Li, R., Carmichael, W. W., Brittain, S., Eaglesham, G. K., Shaw, G. R., Yongding, L. and Watanabe, M. M., "First report of the cyanotoxins cylindrospermopsin and deoxycylindrospermopsin from Raphidiopsis curvata (cyanobacteria)," J. Phycol., 37(6), 1121-1126(2001). https://doi.org/10.1046/j.1529-8817.2001.01075.x
  19. Larson, D., Ahlgren, G. and Willen, "Bioaccumulation of microcystins in the food web: a field study of four Swedish lakes," Inland Waters, 4(1), 91-104(2014). https://doi.org/10.5268/IW-4.1.627
  20. Katagami, Y., Tanaka, T., Honma, T., Yokoyama, A. and Park, H., "Bioaccumulation of a cyanobacterial toxin, microcystin, on Stenopsyche marmorata and the ecological implications for its impact on the ecosystem of the Tenryu River, Japan (in Japanese)," Japanese J. Limnol., 65(1), 1-12 (2004). https://doi.org/10.3739/rikusui.65.1
  21. Park, H., "Dynamics and bioaccumulation of microcystin in aquatic ecosystem (in Japanese)," Kaiyo Monthly, 37(5), 325-334(2005).
  22. Miller, M. A., Kudela, R. M., Mekebri, A., Crane, D., Oates, S. C., Tinker, M. T., Staedler, M., Miller, W. A., Toy-Choutka, S., Dominik, C., Hardin, D., Langlois, G., Murray, M., Ward, K. and Jessup, D. A., "Evidence for a novel marine harmful algal bloom: cyanotoxin (microcystin) transfer from land to sea otters," PLoS One 5(9): e12576. Doi:10.1371/journal.pone.0012576, (2010).
  23. Takahashi, T., Umehara, A. and Tsutsumi, H., "Diffusion of microcystins (cyanobacteria hepatotoxins) from the reservoir of Isahaya Bay, Japan, into the marine and surrounding ecosystems as a result of large-scale drainage," Mar. Pollut. Bull., 89(1-2), 250-258(2014). https://doi.org/10.1016/j.marpolbul.2014.09.052
  24. Lambert, T. W., Holmes, C. F. B. and Hrudey, S. E., "Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment," Water Res., 30(6), 1411-1422 (1996). https://doi.org/10.1016/0043-1354(96)00026-7
  25. Tsuji, K., Watanuki, T., Kondo, F., Watanabe, M. F., Nakazawa, H., Suzuki, M., Uchida, H. and Harada, K., "Stability of Microcystins from cyanobacteria-iv. Effect of chlorination on decomposition," Toxicon, 35(7), 1033-1041(1997). https://doi.org/10.1016/S0041-0101(96)00223-1
  26. Rositano, J., Nicholson, B. C. and Pieronne, P., "Destruction of cyanobacterial toxins by ozone," Ozone: Sci. Eng., 20(3), 223-238(1998). https://doi.org/10.1080/01919519808547273
  27. Tsuji, K., Naito, S., Kondo, F., Ishikawa, N., Watanabe, M. F., Suzuki, M. and Harada, K., "Stability of microcystins from cyanobacteria: effect of light on decomposition and isomerization," Environ. Sci. Technol., 28(1), 173-177(1994). https://doi.org/10.1021/es00050a024
  28. Jeon, B., Han, J., Makino, K. and Park, H., "Degradation of microcystin and possible phosphorus removal mechanism by electrochemical treatment," Environ. Eng. Sci., 31(9), 525-531(2014). https://doi.org/10.1089/ees.2014.0136
  29. Lawton, L. A. and Robertson, P. K. J., "Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters," Chem. Soc. Rev., 28, 217-224(1999). https://doi.org/10.1039/a805416i
  30. Han, J., Jeon B., Futatsuki, N. and Park, H., "The effect of alum coagulation for in-lake treatment of toxic Microcystis and other cyanobacteria related organisms in microcosm experiments," Ecotox. Environ. Safe., 96, 17-23(2013). https://doi.org/10.1016/j.ecoenv.2013.06.008
  31. Bourne, D. G., Jones, G. J., Blakerley, R. L., Jones, A., Negri, A. P. and Riddles, P., "Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin LR," Appl. Environ. Microbiol., 62(11), 4086-4094 (1996).
  32. Park, H., Sasaki, Y., Maruyama, T., Yanagisawa, E., Hiraishi, A. and Kato, K., "Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake," Environ. Toxicol., 16, 337-343(2001). https://doi.org/10.1002/tox.1041
  33. Maruyama, T., Park, H., Ozawa, K., Tanaka, Y., Sumino, T., Hamana, K., Hiraishi, A. and Kato, K., "Sphingosinicella microcystinivorans gen. nov., sp. nov., a microcystin-degrading bacterium," Int. J. Syst. Evol. Micro., 56, 58-59(2006).
  34. Ho, L., Hoefel, D., Saint, C. P. and Newcombe, G., "Isolation and identification of a novel microcystin-degrading bacterium from a biological sand filter," Water Res., 41(20), 4685-4695 (2007). https://doi.org/10.1016/j.watres.2007.06.057
  35. Ho, L., Tang, T., Monis, P. T. and Hoefel, D., "Biodegradation of multiple cyanobacterial metabolites in drinking water supplies," Chemosphere, 87(10), 1149-1154(2012). https://doi.org/10.1016/j.chemosphere.2012.02.020
  36. Zhang, M., Pan, G. and Yan, H., "Microbial biodegradation of microcystin-RR by bacterium Sphingopyxis sp. USTB-05," J. Environ. Sci., 22(2), 168-175(2010). https://doi.org/10.1016/S1001-0742(09)60089-9
  37. Yan, H., Wang, H., Wang, J., Yin, C., Ma, S., Liu, X. and Yin, X., "Cloning and expression of the first gene for biodegrading microcystin LR by Sphingopyxis sp. USTB-05," J. Environ. Sci., 24(10), 1816-1822(2012). https://doi.org/10.1016/S1001-0742(11)61016-4
  38. Alamri, S. A., "Biodegradation of microcystin by a new Bacillus sp. isolated from a Saudi freshwater lake," Afr. J. Biotechnol., 9(39), 6552-6559(2010).
  39. Chen, J., Hu, L., Zhou, W., Yan, S., Yang, J., Xue, Y. and Shi, Z., "Degradation of microcystin-LR and RR by a Stenotrophomonas sp. strain EMS isolated from Lake Taihu, China," Int. J. Mol. Sci., 11(3), 896-911(2010). https://doi.org/10.3390/ijms11030896
  40. Jiang, Y., Shao, J., Wu, X., Xu, Y. and Li, R., "Active and silent members in the mlr gene cluster of a microcystindegrading bacterium isolated from Lake Taihu, China," FEMS Microbiol. Lett., 322(2), 108-114(2011). https://doi.org/10.1111/j.1574-6968.2011.02337.x
  41. Takenaka, S. and Watanabe, M. F., "Microcystin LR degradation by Pseudomonas aeruginosa alkaline protease," Chemosphere, 34(4), 749-757(1997). https://doi.org/10.1016/S0045-6535(97)00002-7
  42. Zhang, M., Yan, H. and Pan, G., "Microbial degradation of microcystin-LR by Ralstonia solanacearum," Environ. Technol., 32(15), 1779-1787(2011). https://doi.org/10.1080/09593330.2011.556148
  43. Rapala, J., Berg, K.A., Lyra, C., Niemi, R. M., Manz, W., Suomalainen, S., Paulin, L. and Lahti, K., "Paucibacter toxinivorans gen. nov., sp. nov., a bacterium that degrades cyclic cyanobacterial hepatotoxins microcystins and nodularin.," Int. J. Syst. Evol. Micro., 55, 1563-1568(2005). https://doi.org/10.1099/ijs.0.63599-0
  44. Lemes, G. A. F., Kersanach, R., Pinto, L. S., Dellagostin, O. A., Yunes, J. and Matthiensen, A., "Biodegradation of microcystins by aquatic Burkholderia sp. from a South Brazilian coastal lagoon.," Ecotox. Environ. Safe., 69(3), 358-365(2008). https://doi.org/10.1016/j.ecoenv.2007.03.013
  45. Hu, L., Yang, J., Zhou, W., Yin, Y., Chen, J. and Shi, Z., "Isolation of a Methylobacillus sp. that degrades microcystin toxins associated with cyanobacteria," New Biotechnol., 26 (3-4), 205-211(2009). https://doi.org/10.1016/j.nbt.2009.09.001
  46. Jia, Y., Du, J., Song, F., Zhao, G. and Tian, X., "A fungus capable of degrading microcystin-LR in the algal culture of Microcystis aeruginosa PCC7806," Appl. Biochem. Biotechnol., 166, 987-996(2012). https://doi.org/10.1007/s12010-011-9486-6
  47. Dziga, D., Wasylewski, M., Wladyka, B., Nybom, S. and Meriluoto, J., "Microbial degradation of microcystins," Chem. Res. Toxicol., 26(6), 841-852(2013). https://doi.org/10.1021/tx4000045
  48. Park, H., "Dynamics of the microcystin in aquatic ecosystem (in Japanese)," Bullet. Plankton Soc. Jap., 55(1), 58-62(2008).
  49. Chorus, I. and Bartram, J., "Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management," WHO(1999).
  50. WHO, "Guidelines for drinking water quality," 2nd ed. Addendum to Volume 2, Health criteria and other supporting information, Geneva, Switzerland(1998).