DOI QR코드

DOI QR Code

하수슬러지를 기질로 하는 미생물전기분해전지에서 전극간 거리가 메탄 생산에 미치는 영향

Influence of Electrode Spacing on Methane Production in Microbial Electrolysis Cell Fed with Sewage Sludge

  • 임성원 (경남과학기술대학교 환경공학과, 녹색기술연구소) ;
  • 안용태 (경남과학기술대학교 에너지공학과) ;
  • 정재우 (경남과학기술대학교 환경공학과, 녹색기술연구소)
  • Im, Seongwon (Department of Environmental Engineering, Green Technology Institute, Gyeongnam National University of Science and Technology) ;
  • Ahn, Yongtae (Department of Energy Engineering, Gyeongnam National University of Science and Technology) ;
  • Chung, Jae-Woo (Department of Environmental Engineering, Green Technology Institute, Gyeongnam National University of Science and Technology)
  • 투고 : 2015.11.12
  • 심사 : 2015.12.23
  • 발행 : 2015.12.31

초록

하수슬러지를 처리하는 미생물전기분해전지(Microbial electrolysis cell, MEC)의 성능에 미치는 전극간 거리의 영향에 관한 실험실 규모 실험을 수행하였다. 각각 다른 전극간 거리(16, 32 mm)를 가진 두 쌍의 전극이 설치된 MEC 반응기가 안정적으로 이루어질 때 전류발생량, 메탄발생량, 메탄수율 등 MEC 성능에 미치는 전극간 거리의 영향을 분석하였다. 전극간 거리가 16 mm일 때, 전류밀도와 메탄발생량은 각각 $3.74A/m^3$$0.616{\sim}0.804Nm^3/m^3$으로 전극간 거리가 32 mm인 조건에서의 $1.50{\sim}1.82A/m^3$$0.529{\sim}0.664Nm^3/m^3$보다 높게 나타났다. COD 및 VSS의 제거효율은 각각 34~40%와 32~38%의 범위를 가지는 것으로 나타났다. 전류밀도가 증가함에 따라 MEC의 생물전기화학적 성능이 향상되어 VSS 감소와 메탄생성이 증가하는 것으로 나타났으며 전류밀도는 VSS 제거효율보다 메탄수율에 상대적으로 큰 영향을 미치는 것으로 나타났다.

Effect of electrode spacing on the performance of microbial electrolysis cells(MECs) for treating sewage sludge was investigated through lab scale experiment. The reactors were equipped with two pairs of electrodes that have a different electrode spacing (16, 32 mm). Shorter electrode distance improved the overall performance of MEC system. With the 16 mm of electrode distance, the current density was $3.04{\sim}3.74A/m^3$ and methane production was $0.616{\sim}0.804Nm^3/m^3$, which were higher than those obtained with 32 mm of electrode spacing ($1.50{\sim}1.82A/m^3$, $0.529{\sim}0.664Nm^3/m^3$). The COD removal was in the range of 34~40%, and the VSS reduction ranged 32~38%. As the current production increased, VSS reduction and methane production were increased possibly due to the improved bioelectrochemical performance of the system. Methane production was more affected by current density than VSS reduction. These results imply that the reducing the electrode spacing can enhance the methane production and recovery from sewage sludge with the decreased internal resistance, however, it was not able to improve VSS reduction of sewage sludge.

키워드

참고문헌

  1. Feng, Y., Zang, Y., Chen, S. and Quan, X., "Enhanced production of methane from waste activated sludge by the combined of high-solid anaerobic digestion and microbial electrolysis cell with iron-graphite electrode," Chem. Eng. J., 259(1), 787-794(2015). https://doi.org/10.1016/j.cej.2014.08.048
  2. Liu, W., Huang, S., Zhou, A., Zhou, G., Ren, N., Wang, A. and Zhuang, G., "Hydrogen generation in microbial electrlysis cell feeding with fermentation liquid of waste activated sludge," Int. J. Hydrogen Energy, 37(18), 13859-13864 (2012). https://doi.org/10.1016/j.ijhydene.2012.04.090
  3. Guo, X., Liu, J. and Xiao, B., "Bioelectrochemical enhancement of hydrogen and methane production from the anaerobic digestion of sewage sludge in single-chamber membranefree microbial electrolysis cells," Int. J. Hydrogen Energy, 38(3), 1342-1347(2013). https://doi.org/10.1016/j.ijhydene.2012.11.087
  4. Lise, A., Jan, B., Jan, D. and Raf, D., "Principles and potential of the anaerobic digestion of waste-activated sludge," Prog. Energy Combust., 34(6), 755-781(2008). https://doi.org/10.1016/j.pecs.2008.06.002
  5. Sun, R., Zhou, A., Jia, J., Liang, Q., Liu, Q., Xing, D. and Ren, Z., "Characterization of methane production and microbial community shifts during waste activated sludge degradation in microbial electrolysis cells," Bioresour. Technol., 175, 68-74(2015). https://doi.org/10.1016/j.biortech.2014.10.052
  6. Braguglia, C. M., Gianico, A., Gallipoli, A. and Mininni, G., "The impact of sludge pre-treatments on mesophilic and thermophilic anaerobic digestion efficiency: Role of the organic load," Chem. Eng. J., 270, 362-371(2015). https://doi.org/10.1016/j.cej.2015.02.037
  7. Ahring, B. K., Sandberg, M. and Angelidaki, I., "Volatile fatty acids as indicators of process imbalance in anaerobic digestors," Appl. Microbiol. Biot., 43(3), 559-565(1995). https://doi.org/10.1007/BF00218466
  8. Li, H., Li, C., Liu, W. and Zou, S., "Optimized alkaline pretreatment of sludge before anaerobic digestion," Bioresour. Technol., 123, 189-194(2012). https://doi.org/10.1016/j.biortech.2012.08.017
  9. Villano, M., Aulenta, F., Ciucci, C., Ferri, T., Giuliano, A. and Majone, M., "Bioelectrochemical reduction of $CO_2$ to $CH_4$ via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture," Bioresour. Technol., 101(9), 3085-3090(2010). https://doi.org/10.1016/j.biortech.2009.12.077
  10. Jansen, M. C. A. A., Heijine, A. T., Buisman, C. J. N. and Hamelers, H. V. M., "Microbial electrolysis cells for production of methane from $CO_2$: long-term performance and perspectives," Int. J. Energy Res., 36(6), 809-819(2012). https://doi.org/10.1002/er.1954
  11. Wang, A., Liu, W., Cheng, S., Xing, D., Zhou, J. and Logan, B. E., "Source of methane and methods to control its formation in single chamber microbial electrolysis cells," Int. J. Hydrogen Energy, 34(9), 3653-3658(2009). https://doi.org/10.1016/j.ijhydene.2009.03.005
  12. Siegert, M., Yates, M. D., Call, D. E., Zhu, X., Spormann, A. and Logan, B. E., "Comparison of nonprecious metal cathode materials for methane production by electromethanogenesis," ACS Sustain. Chem. Eng., 2(4), 910-917(2014). https://doi.org/10.1021/sc400520x
  13. Asztalos, J. R. and Kim, Y., "Enhanced digestion of waste activated sludge using microbial electrolysis cells at ambient temperature," Water Res., 87, 503-512(2015). https://doi.org/10.1016/j.watres.2015.05.045
  14. Cheng, S., Xing, D., Call, D. F. and Logan, B. E., "Direct biological conversion of electrical current into methane by electromethanogenesis," Environ. Sci. Technol., 43(10), 3953-3958(2009). https://doi.org/10.1021/es803531g
  15. Omidi, H. and Sathasivan, A., "Optimal temperature for microbes in an acetate fed microbial electrolysis cell (MEC)," Int. Biodeter. Biodeg., 85, 688-692(2013). https://doi.org/10.1016/j.ibiod.2013.05.026
  16. Kyazze, G., Popov, A., Dinsdale, R., Esteves, S., Hawkes, F., Premier, G. and Guwy, A., "Influence of catholyte pH and temperature on hydrogen production from acetate using a two chamber concentric tubular microbial electrolysis cell," Int. J. Hydrogen Energy, 35(15), 7716-7722(2010). https://doi.org/10.1016/j.ijhydene.2010.05.036
  17. Cheng, S., Liu, H. and Logan, B. E., "Increased power generation in a continuous flow MEC with advective flow through the porous anode and reduced electrode spacing," Environ. Sci. Technol., 40(7), 2426-2432(2006). https://doi.org/10.1021/es051652w
  18. Deng, H., Wu, Y.-C., Zhang, F., Huang, Z.-C., Zhen, Z., Xu, H.-J. and Zhao, F., "Factors affecting the performance of single-chamber soil microbial fuel cells for power generation," Pedosphere, 24(3), 330-338(2014). https://doi.org/10.1016/S1002-0160(14)60019-9
  19. Ghangrekar, M. M. and Shinde, V. B., "Performance of membrane-less microbial fuel cell treating wastewater and effect of electrode spacing and area on electricity production," Bioresour. Technol., 98(15), 2879-2885(2007). https://doi.org/10.1016/j.biortech.2006.09.050
  20. Shizas, I., Bagley, D. M. and Asce, M., "Experimental determination of energy content of unknown organics in municipal wastewater streams," J. Energy Eng., 130(2), 45-53 (2004). https://doi.org/10.1061/(ASCE)0733-9402(2004)130:2(45)
  21. Li, L., Li, D., Sun, Y., Ma, L., Yuan, Z. and Kong, X., "Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China," Int. J. Hydrogen Energy, 35(13), 7261-7266(2010). https://doi.org/10.1016/j.ijhydene.2010.03.074
  22. Bouallagui, H., Haouari, O., Touhami, Y., Ben Cheikh, R., Marouani, L. and Hamdi, M., "Effect of temperature on the performance of an anaerobic tubular reactor treating fruit and vegetable waste," Process Biochem., 39(12), 2143-2148(2004). https://doi.org/10.1016/j.procbio.2003.11.022
  23. Capri, M. G. and Marais, G. V. R., "pH adjustment in anaerobic digestion," Water Res., 9(3), 307-313(1975). https://doi.org/10.1016/0043-1354(75)90052-4
  24. Rao, M. S. and Singh, S. P., "Bioenergy conversion studies of organic fraction of MSW : kinetic studies and gas yieldorganic loading relationships for process optimisation," Bioresour. Technol., 95(2), 173-185(2004). https://doi.org/10.1016/j.biortech.2004.02.013
  25. Li, L., Li, D., Sun, Y., Ma, L., Yuan, Z. and Kong, X., "Effect of temperature and solid concentration on anaerobic digestion of rice straw in South China," Int. J. Hydrogen Energy, 35(13), 7261-7266(2010). https://doi.org/10.1016/j.ijhydene.2010.03.074