DOI QR코드

DOI QR Code

Drain Induced Barrier Lowering of Asymmetric Double Gate MOSFET for Channel Doping Profile

비대칭 DGMOSFET의 도핑분포함수에 따른 DIBL

  • Jung, Hakkee (Department of Electronic Engineering, Kunsan National University)
  • Received : 2015.10.02
  • Accepted : 2015.11.09
  • Published : 2015.11.30

Abstract

This paper analyzes the phenomenon of drain induced barrier lowering(DIBL) for doping profiles in channel of asymmetric double gate(DG) MOSFET. The DIBL, the important short channel effect, is described as lowering of source barrier height by drain voltage. The analytical potential distribution is derived from Poisson's equation to analyze the DIBL, and the DIBL is observed according to the change of doping profile to influence on potential distribution. As a results, the DIBL is significantly influenced by projected range and standard projected deviation, the variables of channel doping profiles. The change of DIBL shows greatly in the range of high doping concentration such as $10^{18}/cm^3$. The DIBL increases with decrease of channel length and increase of channel thickness, and with increase of bottom gate voltage and top/bottom gate oxide film thickness.

본 연구에서는 비대칭 이중게이트 MOSFET의 채널 내 도핑농도분포에 대한 드레인유도장벽감소(Drain Induced Barrier Lowering; DIBL)에 대하여 분석하고자한다. DIBL은 드레인 전압에 의하여 소스 측 전위장벽이 낮아지는 효과로서 중요한 단채널 효과이다. 이를 분석하기 위하여 포아송방정식을 이용하여 해석학적 전위분포를 구하였으며 전위분포에 영향을 미치는 채널도핑농도의 분포함수변화에 대하여 DIBL을 관찰하였다. 채널길이, 채널두께, 상하단 게이트 산화막 두께, 하단 게이트 전압 등을 파라미터로 하여 DIBL을 관찰하였다. 결과적으로 DIBL은 채널도핑 농도분포함수의 변수인 이온주입범위 및 분포편차에 변화를 나타냈다. 특히 두 변수에 대한 DIBL의 변화는 최대채널도핑농도가 $10^{18}/cm^3$ 정도로 고도핑 되었을 경우 더욱 현저히 나타나고 있었다. 채널길이가 감소할수록 그리고 채널두께가 증가할수록 DIBL은 증가하였으며 하단 게이트 전압과 상하단게이트 산화막 두께가 증가할수록 DIBL은 증가하였다.

Keywords

References

  1. A.Esam, N.Keivan and S.Fazel, " A Novel Design Approach for Multi-input XOR Gate Using Multi-input Majority Function," Arabian J. for Science & Engineering, vol.39, no.11, pp.7923-7932, 2014. https://doi.org/10.1007/s13369-014-1387-x
  2. S.C.Kim, H.K.Lee and J.H.Cho,"Analysis of low-dose radiation shield effectiveness of nulti-gate polymetric sheets," Radiation Effects and Defects in Solids, vol.169, no.9, pp.584-591, 2014. https://doi.org/10.1080/10420150.2014.920019
  3. J.Conde, I.Mejia, F.S.Aguirre-Tostado, C.Young and M.Quevedo-Lopez, "Design considerations for II-VI multi-gate transistors: the case of cadmium sulfide," Semiconductors Science & Technology, vol.29, no.4, pp.045006-045011, 2014. https://doi.org/10.1088/0268-1242/29/4/045006
  4. S.Khandelwal, J.P.Duarte, Y.S.Chauhan and C.Hu, "Modeling 20-nm Germanium FinFET With the Industry Standard FinFET Model," IEEE Electron Device letters, vol.35, no.7, pp.711-713, 2014. https://doi.org/10.1109/LED.2014.2323956
  5. Z.Ding, G.Hu, J.Gu, R.Liu, L.Wang and T.Tang,"An analytical model for channel potential and subthreshold swing of the symmetric and asymmetric double-gate MOSFETs," Microelectronics J., vol.42, pp.515-519, 2011. https://doi.org/10.1016/j.mejo.2010.11.002
  6. Hakkee Jung, :Analysis for Potential Distribution of Asymmetric Double Gate MOSFET Using Series Function, J. of KIICE, vol.17, no.11, pp.2621-2626. 2013.
  7. Q.Chen, B.Agrawal and J.D.Meindl,"A Comprehensive Analytical Subthreshold Swing(S) Model for Double-Gate MOSFETs," IEEE Trans. on Electron Devices, vol.49, no.6, pp.1086-1090, 2002. https://doi.org/10.1109/TED.2002.1003757
  8. H.K.Jung and O.S.Kwon,"Analysis of Channel Dimension Dependent Threshold Voltage for Asymmetric DGMOSFET," 2014 International Conference on Future Information & Communication Engineering, vol.6, no.1, pp.299-302, 2014.