DOI QR코드

DOI QR Code

Interface trap density distribution in 3D sequential Integrated-Circuit and Its effect

3차원 순차적 집적회로에서 계면 포획 전하 밀도 분포와 그 영향

  • Ahn, TaeJun (Department of Electronic Engineering, Hankyong National University) ;
  • Lee, Si Hyun (Department of Information and Communication, Dong-Seoul University) ;
  • Yu, YunSeop (Department of Electrical, Electronic and Control Engineering, Hankyong National University)
  • Received : 2015.08.25
  • Accepted : 2015.10.05
  • Published : 2015.12.31

Abstract

This paper introduces about the effect on $I_{DS}-V_{GS}$ characteristic of transistor that interface trap charge is created by damage due to heat in a 3D sequential inverter. A interface trap charge distribution in oxide layer in a 3D sequential inverter is extracted using two-dimensional device simulator. The variation of threshold voltage of top transistor according to the gate voltage variation of bottom transistor is also described in terms of Inter Layer Dielectric (ILD) length of 3D sequential inverter, considering the extracted interface trap charge distribution. The extracted interface trap density distribution shows that the bottom $HfO_2$ layer and both the bottom and top $SiO_2$ layer were relatively more affected by heat than the top $HfO_2$ layer with latest process. The threshold voltage variations of the shorter length of ILD in 3D sequential inverter under 50nm is higher than those over 50nm. The $V_{th}$ variation considering the interface trap charge distribution changes less than that excluding it.

3차원 순차적 집적회로에서 열에 의한 손상으로 생성되는 계면 포획 전하가 트랜지스터의 드레인 전류-게이트 전압 특성에 미치는 영향을 소개한다. 2차원 소자 시뮬레이터를 이용해서 산화막 층에 계면 포획 전자 분포를 추출한 결과를 설명한다. 이 계면 포획 전자분포를 고려한 3차원 순차적 집적회로에서 Inter Layer Dielectric (ILD)의 길이에 따른 하층 트랜지스터의 게이트 전압의 변화에 따라서 상층 트랜지스터의 문턱전압 $V_{th}$의 변화량에 대해서 소개한다. 상대적으로 더 늦은 공정인 상층 $HfO_2$층 보다 하층 $HfO_2$층과 양쪽 $SiO_2$층이 열에 의한 영향을 더 많이 받았다. 계면 포획 전하 밀도 분포를 사용하지 않았을 때 보다 사용 했을 때 $V_{th}$ 변화량이 더 적게 변하는 것을 확인 했다. 3차원 순차적 인버터에서 ILD의 길이가 50nm이하로 짧아질수록 점점 더 $V_{th}$ 변화량이 급격히 증가하였다.

Keywords

References

  1. L. Clavelier, C. Deguet, L. Di Cioccio, E. Augendre, A. Brugere, P. Gueguen, Y. Le Tiec, H. Moriceau, M. Rabarot, T. Signamarcheix, J. Widiez, O. Faynot, F. Andrieu, O. Weber, C. Le Royer, P. Batude, L. Hutin, J-F. Damlencourt, S. Deleonibus, E. Defay, "Engineered substrates for Future More Moore and More Than Moore Integrated Devices," in Proceeding of 2010 IEEE International Electron Devices Meeting (IEDM), San Francisco: pp. 2.6.1-2.6.4, 2010.
  2. M. Vinet, P. Batude, C. Tabone, B. Previtali, C. LeRoyer, A. Pouydebasque, L. Clavelier, A. Valentian , O. Thomas, S. Michaud, L. Sanchez, L. Baud, A. Roman, V. Carron, F. Nemouchi, V. Mazzocchi, H. Grampeix, A. Amara, S. Deleonibus, O. Faynot, "3D monolithic integration: Technological challenges and electrical results," Microelectronic Engineering, Vol. 88, pp. 331-335, 2011. https://doi.org/10.1016/j.mee.2010.10.022
  3. P. Batude, B. Sklenard , C. Xu , B. Previtali , B. De Salvo, M. Vinet, "Low temperature FDSOI devices, a key enabling technology for 3D sequential integration," in Proceeding of International Symposium on VLSI Technology, Systems, and Applications (VLSI-TSA), pp. 1-4, 2013.
  4. O. Billoint, H. Sarhan, I. Rayane, M. Vinet, P. Batude, C. Fenouillet-Beranger, O. Rozeau, G. Cibrario, F. Deprat, O. Turkyilmaz, S. Thuries, F. Clermidy, "From 2D to Monolithic 3D: Design Possibilities, Expectations and Challenges," in Proceeding of the 2015 Symposium on International Symposium on Physical Design (ISPD '15), New York: pp. 127-127, 2015.
  5. P. Batude, M. Vinet, C. Xu, B. Previtali, C. Tabone, C. Le Royer, L. Sanchez, L. Baud, L.Brunet, A. Toffoli, F. Allain, D. Lafond, F. Aussenac, O. Thomas, T. Poiroux and O. Faynot, "Demonstration of low temperature 3D sequential FDSOI integration down to 50 nm gate length," in Proceeding of 2011 Symposium on VLSI Technology, Kyoto: pp. 158-159, 2011.
  6. P. Batude, M.-A. Jaud, O. Thomas, L. Clavelier, A. Pouydebasque, M. Vinet, S. Deleonibus, A. Amara, "3D CMOS Integration : Introduction of Dynamic coupling and Application to Compact and Robust 4T SRAM," in Proceeding of 2008 IEEE International conference on Integrated Circuit Design and Technology, Grenoble: pp. 281-284, 2008.
  7. Atlas User's Manual, DEVICE SIMULATION SOFTWARE, Silaco. Inc, November 7, 2014.
  8. M. Casse, X. Garros, O. Weber, F. Andrieu, G. Reimbold, F. Boulanger, "A study of N-induced traps due to a nitrided gate in high-k/metal gate nMosFETs and their impact on electron mobility," Solid-State Electronics, Vol. 65-66, pp.139-145, 2011. https://doi.org/10.1016/j.sse.2011.06.015
  9. T. Liao, X. Ji, Y. Hu, F. Yan, Y. Shi, G. Zhang and Q. Guo, "The Effect of Nitrogen on the Energy Distribution of Hole Traps Generated under Negative Bias Temperature Stress," ECS Trans, Vol. 44, Issue 1, pp. 1131-1135, 2012.

Cited by

  1. Monolithic 3D Inverter with Interface Charge: Parameter Extraction and Circuit Simulation vol.11, pp.24, 2021, https://doi.org/10.3390/app112412151