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LIGHTLIKE HYPERSURFACES OF A LORENTZ MANIFOLD

WITH A SEMI-SYMMETRIC NON-METRIC CONNECTION

Dae Ho Jin

Abstract. In this paper, we study lightlike hypersurfaces M of a Lorentz

manifold M̄ with a semi-symmetric non-metric connection subject to the

conditions; (1) the screen distribution S(TM) is totally geodesic in M ,
and (2) the second fundamental form B of M is parallel.

1. Introduction

The notion of semi-symmetric non-metric connection on Riemannian man-
ifolds was introduced by Ageshe and Chafle. In [1], they studied some prop-
erties of the curvature tensor of a Riemannian manifold endowed with a semi-
symmetric non-metric connection. In [2], they gave basic properties of subman-
ifolds of a Riemannian manifold endowed with a semi-symmetric non-metric
connection. Yasar, Cöken and Yücesan [6] studied lightlike hypersurfaces in
a semi-Riemannian manifold endowed with a semi-symmetric non-metric con-
nection. They found the condition that the Ricci type tensor of a lightlike
hypersurface of such a semi-Riemannian manifold be symmetric.

In this paper, we study lightlike hypersurfaces M of a Lorentz manifold M̄
endowed with a semi-symmetric non-metric connection subject to the condi-
tions; (1) the screen distribution S(TM) is totally geodesic in M , and (2) the
second fundamental form B of M is parallel. We prove the following result:

Theorem 1.1. Let M be a lightlike hypersurface of a Lorentz manifold M̄
admitting a semi-symmetric non-metric connection. If the screen distribution
S(TM) is totally geodesic in M and the second fundamental form B of M is
parallel, then M is locally a product manifold L×Mo ×Mλ, where L is a null
curve tangent to the radical distribution Rad(TM), and Mo and Mλ are leaves
of some integrable distributions of M .
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2. Semi-symmetric non-metric connection

Let (M̄, ḡ) be a semi-Riemannian manifold. A connection ∇̄ on M̄ is called a
semi-symmetric non-metric connection [1] if ∇̄ and its torsion tensor T̄ satisfy

(∇̄X ḡ)(Y,Z) = −π(Y )ḡ(X,Z)− π(Z)ḡ(X,Y ), (2.1)

T̄ (X,Y ) = π(Y )X − π(X)Y, (2.2)

for any vector fields X, Y and Z on M̄ , where π is a 1-form associated with a
non-zero vector field ζ by π(X) = ḡ(X, ζ).

Let (M, g) be a lightlike hypersurface of a semi-Riemannian manifold (M̄, ḡ)
with a semi-symmetric non-metric connection. Then the normal bundle TM⊥

of M is a vector subbundle of TM of rank 1 and coincides the radical distri-
bution Rad(TM) = TM ∩ TM⊥ of M . Hence the degenerate metric g on M
induced by the semi-Riemannian metric ḡ has constant rank dimM − 1. A
complementary vector bundle S(TM) of Rad(TM) in TM is non-degenerate
distribution on M , which is called a screen distribution on M [4], such that

TM = Rad(TM)⊕orth S(TM),

where ⊕orth denotes the orthogonal direct sum. We denote such a lightlike
hypersurface by M = (M, g, S(TM)). Denote by F (M) the algebra of smooth
functions on M and by Γ(E) the F (M) module of smooth sections of a vector
bundle E over M . It is well-known [4] that, for any null section ξ of Rad(TM)
on a coordinate neighborhood U ⊂ M , there exists a unique null section N of
a unique vector bundle tr(TM) in S(TM)⊥ satisfying

ḡ(ξ, N) = 1, ḡ(N, N) = ḡ(N, X) = 0, ∀X ∈ Γ(S(TM)).

We call tr(TM) and N the transversal vector bundle and the null transversal
vector field with respect to S(TM) respectively. Then TM̄ is decomposed as

TM̄ = TM ⊕ tr(TM) = {Rad(TM) ⊕ tr(TM)} ⊕orth S(TM).

In the sequel, let X, Y, Z and W be the vector fields on M , unless otherwise
specified. Let P be the projection morphism of TM on S(TM). Then the local
Gauss and Weingartan formulas of M and S(TM) are given by

∇̄XY = ∇XY +B(X,Y )N, (2.3)

∇̄XN = −A
N
X + τ(X)N ; (2.4)

∇XPY = ∇∗XPY + C(X,PY )ξ, (2.5)

∇Xξ = −A∗ξX − σ(X)ξ, (2.6)

where ∇ and ∇∗ are the induced linear connections on TM and S(TM) respec-
tively, B and C are the local second fundamental forms on TM and S(TM)
respectively, A

N
and A∗ξ are the shape operators on TM and S(TM) respec-

tively, and τ and σ are 1-forms on TM .
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Using (2.1), (2.2) and (2.3), we show that

(∇Xg)(Y, Z) = B(X,Y )η(Z) +B(X,Z)η(Y ) (2.7)

− π(Y )g(X,Z)− π(Z)g(X,Y ),

T (X,Y ) = π(Y )X − π(X)Y, (2.8)

and B is symmetric on TM , where T is the torsion tensor with respect to the
induced connection ∇ and η is a 1-form on TM such that

η(X) = ḡ(X,N).

From the fact B(X,Y ) = ḡ(∇̄XY, ξ), we know that B is independent of the
choice of a screen distribution. Taking Y = ξ to this and using (2.1), we get

B(X, ξ) = 0. (2.9)

The local second fundamental forms are related to their shape operators by

g(A∗ξX,Y ) = B(X,Y )− λg(X,Y ), ḡ(A∗ξX,N) = 0, (2.10)

g(A
N
X,PY ) = C(X,PY )− µg(X,PY )− π(PY )η(X), (2.11)

ḡ(A
N
X,N) = −µη(X), σ(X) = τ(X)− λη(X),

where λ = π(ξ) and µ = π(N) are smooth functions. By (2.10), we show that
A∗ξ is S(TM)-valued self-adjoint shape operators related to B and satisfies

A∗ξξ = 0. (2.12)

Remark 1. We say that S(TM) is totally geodesic [4] in M if C = 0. In this
case, from (2.5), (2.6) and (2.12), we show that Rad(TM) and S(TM) are
parallel distributions on M . Thus, by the decomposition theorem of de Rham
[3], M is locally a product manifold L×M∗ where L is a null curve tangent to
Rad(TM) and M∗ is a leaf of S(TM).

3. Proof of Theorem 1.1

Under the hypothesis, we show that S(TM) is a Riemannian vector bundle.
By Remark 1, M is locally a product manifold L×M∗, where L is a null curve
tangent to Rad(TM) and M∗ is a leaf of S(TM). Applying ∇X to B(Y, ξ) = 0
and using (2.6), (2.9) and (2.10), we have

g(A∗ξX,A
∗
ξY ) = λg(A∗ξX,Y ). (3.1)

By (2.12), ξ is an eigenvector field of A∗ξ corresponding to the eigenvalue 0.

As A∗ξ is S(TM)-valued real self-adjoint operator, A∗ξ have m real orthonormal

eigenvector fields in S(TM) and is diagonalizable. Consider a frame field of
eigenvectors {ξ, E1, . . . , Em} of A∗ξ such that {E1, . . . , Em} is an orthonormal

frame field of S(TM) and A∗ξEi = λiEi for each i. Put X = Y = Ei in (3.1),
each λi is a solution of the equation

x2 − λx = 0. (3.2)
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(3.2) has at most two distinct solutions 0 and λ. Assume that there exists
p ∈ {0, 1, . . . , m} such that λ1 = · · · = λp = 0 and λp+1 = · · · = λm = λ, by
renumbering if necessary.

Case 1. p = 0 or p = m: As S(TM) is totally geodesic, we have M =
L×M∗ ∼= L×M∗×{x} for any x ∈M , where M∗ = Mo and Mλ = {x}. Thus
this theorem is true.

Case 2. 0 < p < m: Consider the distributions Do, Dλ, D
s
o and Ds

λ on M ;

Do = {X ∈ Γ(TM) | A∗ξX = 0 and PX 6= 0}, Ds
o = PDo,

Dλ = {U ∈ Γ(TM) | A∗ξU = λPU and PU 6= 0}, Ds
λ = PDλ.

Clearly we show that Do ∩Dλ = {0} and Ds
o ∩Ds

λ = {0} as λ 6= 0.

For any X ∈ Γ(Do) and U ∈ Γ(Dλ), we get A∗ξPX = A∗ξX = 0 and A∗ξPU =

A∗ξU = λPU . This imply PX ∈ Γ(Ds
o) and PU ∈ Γ(Ds

λ). Thus P maps Γ(Do)

onto Γ(Ds
o) and Γ(Dλ) onto Γ(Ds

λ). Since PX and PU are eigenvector fields
of the real self-adjoint operator A∗ξ corresponding to the different eigenvalues

0 and λ respectively, we have g(PX, PU) = 0. From the facts g(X,U) =
g(PX,PU) = 0 and B(X,U) = g(A∗ξX,U) + λg(X,U) = λg(X,U) = 0, we
show that Do⊥g

Dλ and Do⊥B
Dλ respectively.

Since {Ei}1≤i≤p and {Ea}p+1≤a≤m are vector fields of Ds
o and Ds

λ respec-
tively and Ds

o and Ds
λ are mutually orthogonal vector subbundle of S(TM), Ds

o

andDs
λ are non-degenerate distributions of rank p and rank (m−p) respectively.

Thus S(TM) = Ds
o ⊕orth Ds

λ.

From (3.1), we show that A∗ξ(A
∗
ξ − λP ) = (A∗ξ − λP )A∗ξ = 0. Let Y ∈

ImA∗ξ , then there exists X ∈ Γ(TM) such that Y = A∗ξX. Then we have

(A∗ξ − λP )Y = 0 and Y ∈ Γ(Dλ). Thus ImA∗ξ ⊂ Γ(Dλ). Since the morphism

A∗ξ maps Γ(TM) onto Γ(S(TM)), we have ImA∗ξ ⊂ Γ(Ds
λ). By duality, we

also have Im(A∗ξ − λP ) ⊂ Γ(Ds
o).

For any X, Y ∈ Γ(Do) and U, V ∈ Γ(Dλ), applying ∇X to B(U, V ) =
2λg(U, V ) and ∇U to B(X,Y ) = λg(X,Y ) and then, using (2.7), (2.10) and
the facts ∇B = 0 and Do⊥g

Dλ ; Do⊥B
Dλ, we have (Xλ)g(U, V ) = 0 and

(Uλ)g(X,Y ) = 0, i.e., Xλ = 0 and Uλ = 0. This imply Zλ = 0 for all
Z ∈ Γ(Do ⊕orth Dλ). Thus λ is a constant on S(TM).

For any X, Y, Z ∈ Γ(Ds
o), applying ∇Z to B(X,Y ) = λg(X,Y ) and using

(2.7), (2.10) and the facts ∇B = 0 and λ is a constant on S(TM) , we have
(∇

Z
g)(X,Y ) = 0, i.e.,

π(X)g(Y, Z) + π(Y )g(X,Z) = 0. (3.3)

Using this and the fact Ds
o is non-degenerate, we have

π(X)Y = −π(Y )X. (3.4)
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Taking the skew-symmetric part of (3.3) for X and Z, we get π(X)g(Y,Z) =
π(Z)g(X,Y ), from which we have

π(X)Y = π(Y )X. (3.5)

From (3.4) and (3.6), we obtain π(X) = 0 for all X ∈ Γ(Ds
o). By duality, we

have π(U) = 0 for all U ∈ Γ(Ds
λ). Thus π = 0 on S(TM) and ∇

X
g = 0 for all

X ∈ Γ(S(TM)).

For any X, Y ∈ Γ(Ds
o) and U, V ∈ Γ(Ds

λ), applying ∇X to B(Y,U) = 0 and
∇V to B(Y, U) = 0 and then, using (2.7), (2.10) and the facts ∇B = 0 and
∇

X
g = 0 for all X ∈ Γ(S(TM)), we have

g(A∗ξ∇XY, U) = 0, g((A∗ξ − λP )∇V U, Y ) = 0.

Since Ds
λ is non-degenerate and ImA∗ξ ⊂ Γ(Ds

λ), we have A∗ξ∇XY = 0. Thus

∇XY ∈ Γ(Do). By duality, we have ∇V U ∈ Γ(Dλ). As S(TM) is totally
geodesic in M , this results imply that ∇XY ∈ Γ(Ds

o) for all X, Y ∈ Γ(Ds
o)

and ∇V U ∈ Γ(Ds
λ) for all U, V ∈ Γ(Ds

λ). Thus Ds
o and Ds

λ are integrable and
auto-parallel distributions.

Since the leaf M∗ of S(TM) is a Riemannian manifold and S(TM) =
Ds
o ⊕orth Ds

λ, where Ds
o and Ds

λ are auto-parallel distributions with respect
to the induced connection ∇ on S(TM), by the decomposition theorem of de
Rham [3], we have M∗ = Mo ×Mλ, where Mo and Mλ are leaves of Ds

o and
Ds
λ respectively. Thus we have Theorem 1.1.

Concluding remark. Let M be a half lightlike submanifold [5] of a Lorentz
manifold M̄ with a semi-symmetric non-metric connection subject to the con-
ditions; (1) the screen distribution S(TM) is totally geodesic in M and (2) the
second fundamental form B of M is parallel. Then, by a procedure same as for
Theorem 1.1 from the structure equations

∇̄XY = ∇XY +B(X,Y )N +D(X,Y )L,

∇̄XN = −A
N
X + τ(X)N + ρ(X)L,

∇̄XL = −A
L
X + φ(X)N,

∇XPY = ∇∗XPY + C(X,PY )ξ,

∇Xξ = −A∗ξX − σ(X)ξ,

(∇Xg)(Y,Z) = B(X,Y )η(Z) +B(X,Z)η(Y )

− π(Y )g(X,Z)− π(Z)g(X,Y ),

T (X,Y ) = π(Y )X − π(X)Y,

B(X, ξ) = 0, D(X, ξ) = −ε φ(X),

g(A∗ξX,Y ) = B(X,Y )− λg(X,Y ), ḡ(A∗ξX,N) = 0,

the following result will be established:
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Theorem 3.1. Let M be a half lightlike submanifold of a Lorentz manifold M̄
admitting a semi-symmetric non-metric connection. If the screen distribution
S(TM) is totally geodesic in M and the lightlike second fundamental form B
of M is parallel, then M is locally a product manifold L×Mo ×Mλ, where L
is a null curve tangent to the radical distribution Rad(TM), and Mo and Mλ

are leaves of some integrable distributions of M .
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