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LIGHTLIKE SUBMANIFOLDS OF A SEMI-RIEMANNIAN

MANIFOLD WITH A SEMI-SYMMETRIC NON-METRIC

CONNECTION

Jong Moon Shin

Abstract. We study the geometry of r-lightlike submanifolds M of a

semi-Riemannian manifold M̄ with a semi-symmetric non-metric connec-
tion subject to the conditions; (a) the screen distribution of M is to-

tally geodesic in M , and (b) at least one among the r-th lightlike second

fundamental forms is parallel with respect to the induced connection of
M . The main result is a classification theorem for irrotational r-lightlike

submanifold of a semi-Riemannian manifold of index r admitting a semi-
symmetric non-metric connection.

1. Introduction

The geometry of lightlike submanifolds is used in mathematical physics, in
particular, in general relativity since lightlike submanifolds produce models of
different types of horizons (event horizons, Cauchy’s horizons, Kruskal’s hori-
zons). The universe can be represented as a four dimensional Lorentz subman-
ifold (spacetime) embedded in an (n+ 4)-dimensional semi-Riemannian mani-
fold. Lightlike hypersurfaces are also studied in the theory of electromagnetism
[1]. Thus, large number of applications but limited information available, moti-
vated us to do research on this subject matter. Duggal-Bejancu [1] and Kupeli
[2] developed the general theory of degenerate (lightlike) submanifolds. They
constructed a transversal vector bundle of lightlike submanifold and investi-
gated various properties of these manifolds. Duggal-Jin [3] studied totally
umbilical lightlike submanifold of a semi-Riemannian manifold. Ageshe and
Chafle [4] introduced the notion of a semi-symmetric non-metric connection on
a Riemannian manifold. Yaşar, Çöken and Yücesan [5] and Jin [6] studied light-
like hypersurfaces in semi-Riemannian manifolds admitting a semi-symmetric
non-metric connections. The geometry of half lightlike submanifolds of a semi-
Riemannian manifold with semi-symmetric non-metric connection was studied
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by Jin [7], and Jin and Lee [8]. However, a general notion of lightlike sub-
manifolds of an semi-Riemannian manifold with a semi-symmetric non-metric
connection is relatively new one as yet.

The objective of this paper is to study the geometry of irrotational r-lightlike
submanifoldsM of a semi-Riemannian manifold M̄ admitting a semi-symmetric
non-metric connection subject to the conditions; (a) the screen distribution
S(TM) is totally geodesic in M , and (b) at least one among the r-th lightlike
second fundamental forms h`i is parallel with respect to the induced connection
∇ of M . We have the following result:

Theorem 1.1. LetM be an m-dimensional irrotational r-lightlike submanifold
of a semi-Riemannian manifold M̄ of index r admitting a semi-symmetric non-
metric connection. If the screen distribution S(TM) is totally geodesic in M
and at least one among the r-th lightlike second fundamental forms h`i is parallel
with respect to the induced connection ∇ of M , then M is locally a product
manifold Mr ×Mp ×Ms, where Mr, Mp and Ms are leaves of some integrable
distributions of M , where r + p+ s = m.

2. Semi-symmetric non-metric connections

Let (M̄, ḡ) be a semi-Riemannian manifold. A connection ∇̄ on M̄ is called a
semi-symmetric non-metric connection [4] if ∇̄ and its torsion tensor T̄ satisfy

(∇̄X ḡ)(Y, Z) = −π(Y )ḡ(X,Z)− π(Z)ḡ(X,Y ), (2.1)

T̄ (X,Y ) = π(Y )X − π(X)Y, (2.2)

for any vector fields X, Y and Z on M̄ , where π is a 1-form associated with a
non-zero vector field ζ by π(X) = ḡ(X, ζ) for any vector field X on M̄ .

Let (M, g) be anm-dimensional lightlike submanifold of an (m+n)-dimensional
semi-Riemannian manifold (M̄, ḡ). We follow Duggal-Bejancu [1] for nota-
tions and results used in this paper. The radical distribution Rad(TM) =
TM ∩ TM⊥ is a vector subbundle of the tangent bundle TM and the nor-
mal bundle TM⊥, of rank r (1 ≤ r ≤ min{m, n}). Then, in general, there
exist two complementary non-degenerate distributions S(TM) and S(TM⊥)
of Rad(TM) in TM and TM⊥ respectively, called the screen and co-screen
distribution on M , and we have the following two decompositions

TM = Rad(TM)⊕orth S(TM) ; TM⊥ = Rad(TM)⊕orth S(TM⊥), (2.3)

where the symbol ⊕orth denotes the orthogonal direct sum. We denote such
a lightlike submanifold by (M, g, S(TM), S(TM⊥)). Denote by F (M) the al-
gebra of smooth functions on M and by Γ(E) the F (M) module of smooth
sections of a vector bundle E over M . Let tr(TM) and ltr(TM) be comple-
mentary (but not orthogonal) vector bundles to TM in TM̄|M and TM⊥ in

S(TM)⊥ respectively and let {N1, . . . , Nr} be a lightlike basis of ltr(TM)
consisting of smooth sections of S(TM)⊥ [1] such that

ḡ(Ni, ξj) = δij , ḡ(Ni, Nj) = ḡ(X,Ni) = ḡ(W,Ni) = 0,
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for all X ∈ Γ(S(TM)) and W ∈ Γ(S(TM⊥)), where the set {ξ1, · · · , ξr} is a
lightlike basis of Rad(TM). Then the tangent bundle TM̄ is decomposed as
follow:

TM̄ = TM ⊕ tr(TM) = {Rad(TM) ⊕ tr(TM)} ⊕orth S(TM)

= {Rad(TM)⊕ ltr(TM)} ⊕orth S(TM) ⊕orth S(TM⊥). (2.4)

We say that a lightlike submanifold (M, g, S(TM), S(TM⊥)) of M̄ is
(1) r-lightlike if 1 ≤ r < min{m, n};
(2) co-isotropic if 1 ≤ r = n < m;
(3) isotropic if 1 ≤ r = m < n;
(4) totally lightlike if 1 ≤ r = m = n.

The above three classes (2)∼(4) are particular cases of the class (1) as follows
S(TM⊥) = {0}, S(TM) = {0} and S(TM) = S(TM⊥) = {0} respectively.
The geometry of r-lightlike submanifolds is more general form than that of the
other three type submanifolds. For this reason, we consider only r-lightlike
submanifolds M ≡ (M, g, S(TM), S(TM⊥)), with the following local quasi-
orthonormal field of frames of M̄ :

{ξ1, · · · , ξr , N1, · · · , Nr , Fr+1, · · · , Fm , Wr+1, · · · , Wn},

where {ξ1, · · · , ξr} and {N1, · · · , Nr} are lightlike bases ofRad(TM) and ltr(TM)
respectively, and {Fr+1, · · · , Fm} and {Wr+1, · · · , Wn} are orthonormal bases
of S(TM) and S(TM⊥) respectively. We use the following range of indices:

i, j, k, ... ∈ {1, ... , r}; a, b, c, ... ∈ {r + 1, ... , m};
A, B, C, ... ∈ {1, ... , m}; α, β, γ, ... ∈ {r + 1, ... , n}.

Let P be the projection morphism of TM on S(TM) with respect to the de-
composition (2.3). For an r-lightlike submanifold, the local Gauss-Weingartan
formulas are given by

∇̄XY = ∇XY +

r∑
i=1

h`i(X,Y )Ni +

n∑
α=r+1

hsα(X,Y )Wα, (2.5)

∇̄XNi = −ANiX +

r∑
j=1

τij(X)Nj +

n∑
α=r+1

ρiα(X)Wα, (2.6)

∇̄XWα = −AWα
X +

r∑
i=1

φαi(X)Ni +

n∑
β=r+1

θαβ(X)Wβ , (2.7)

∇XPY = ∇∗XPY +

r∑
i=1

h∗i (X,PY )ξi, (2.8)

∇Xξi = −A∗ξiX −
r∑
j=1

σij(X)ξj , (2.9)
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for any X, Y ∈ Γ(TM), where ∇ and ∇∗ are induced linear connections on TM
and S(TM) respectively, the bilinear forms h`i and hsα on M are called the local
lightlike second fundamental form and local screen second fundamental form on
TM respectively, h∗i is called the local second fundamental form on S(TM).
ANi , A

∗
ξi

and AWα
are linear operators on TM and τij , ρiα, φαi, θαβ and σij

are 1-forms on TM .
Using (2.1), (2.2) and (2.5), we show that

(∇Xg)(Y, Z) =

r∑
i=1

{h`i(X,Y ) ηi(Z) + h`i(X,Z) ηi(Y )} (2.10)

− π(Y )g(X,Z) − π(Z)g(X,Y ),

T (X,Y ) = π(Y )X − π(X)Y, ∀X, Y, Z ∈ Γ(TM). (2.11)

and each h`i and hsα are symmetric on TM , where T is the torsion tensor with
respect to the induced connection ∇ and ηi is a 1-form on TM such that

ηi(X) = ḡ(X,Ni), ∀X ∈ Γ(TM), i ∈ {1, · · · , r}.

From the facts h`i(X,Y ) = ḡ(∇̄XY, ξi) and hsα(X,Y ) = εαḡ(∇̄XY,Wα), we
know that h`i and hsα are independent of the choice of S(TM). Taking Y = ξi
to this equations, we get

h`i(X, ξj) + h`j(X, ξi) = 0, hsα(X, ξi) = −εαφαi(X), ∀X ∈ Γ(TM).

From the first equation of this, we have h`i(X, ξi) = 0 and h`i(ξj , ξk) = 0. The
above local second fundamental forms of M and S(TM) are related to their
shape operators by

h`i(X,Y ) = g(A∗ξiX,Y ) + λig(X,Y )−
r∑

k=1

h`k(X, ξi)ηk(Y ), (2.12)

ḡ(A∗ξiX,Nj) = 0, τji(X)− σij(X) = λiηj(X),

εαh
s
α(X,Y ) = g(AWα

X,Y ) + εαναg(X,Y )−
r∑
i=1

φαi(X)ηi(Y ),(2.13)

ḡ(AWα
X,Ni) = εα{ρiα(X)− ναηi(X)},

h∗i (X,PY ) = g(ANiX,PY ) + µig(X,PY ) + π(PY )ηi(X), (2.14)

ηj(ANiX) + ηi(ANjX) + µiηj(X) + µjηi(X) = 0,

εβθαβ = −εαθβα, ∀X, Y ∈ Γ(TM),

where εα = ḡ(Wα,Wα) is the sign (±1) of Wα, and λi = π(ξi), µi = π(Ni)
and να = εαπ(Wα) are smooth functions. From (2.9), we know that A∗ξi are

S(TM)-valued for any i.

Definition 1. We say that S(TM) is totally geodesic [1] in M if h∗i = 0 for all
i. M is said to be irrotational [2] if ∇̄Xξi ∈ Γ(TM) for any X ∈ Γ(TM) and
ξi ∈ Γ(Rad(TM)).
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Note that M is irrotational if and only if

h`j(X, ξi) = 0, hsα(X, ξi) = φαi = 0, ∀X ∈ Γ(TM). (2.15)

In this case, replacing X by ξj to (2.12), we have h`i(X, ξj) = g(A∗ξiξj , X).
Thus we have A∗ξiξj = 0. This implies that each ξj is an eigenvector field of A∗ξi
corresponding to the eigenvalue 0. If M is irrotational and S(TM) is totally
geodesic, then we have

Theorem 2.1. Let M be an irrotational r-lightlike submanifold of a semi-
Riemannian manifold M̄ admitting a semi-symmetric non-metric connection.
If S(TM) is totally geodesic in M , then M is locally a product manifold Mr ×
Mm−r where Mr and Mm−r are leaves of the integrable distributions Rad(TM)
and S(TM) of M respectively and m = dimM .

Proof. As M is irrotational, we have A∗ξiξj = 0. From this and (2.9), we

show that Rad(TM) is an auto-parallel distribution on M . Also, as S(TM) is
totally geodesic in M , we have ∇XY = ∇∗XY for all X, Y ∈ Γ(S(TM)). This
implies that S(TM) is also an auto-parallel distribution on M . Thus, by the
decomposition theorem of de Rham [9], we have M = Mr ×Mm−r where Mr

and Mm−r are leaves of the integrable distributions Rad(TM) and S(TM) of
M respectively. �

3. Proof of Theorem 1.1

By Theorem 2.1, we know that M is locally a product manifold M = Mr ×
Mm−r where Mr and Mm−r are leaves of the integrable distributions Rad(TM)
and S(TM) respectively. As the index of M̄ is r, S(TM) is a Riemannian
vector bundle. Now we assume that the lightlike second fundamental form h`1
is parallel, i.e., ∇Xh`1 = 0, without loss generality. Then we set ξ1 = ξ, λ1 = λ
and h`1 = h`. From (2.12) we deduce the following equation

h`(X,Y ) = g(A∗ξX,Y ) + λg(X,Y ), ∀X, Y ∈ Γ(TM). (3.1)

Applying ∇X to h`(Y, ξ) = 0 and using (2.9), (2.15)1 and (3.1), we have

g(A∗ξX,A
∗
ξY ) = λg(A∗ξX,Y ), ∀X, Y ∈ Γ(TM). (3.2)

By (2.15)1, we show that ξ is an eigenvector field of A∗ξ corresponding to the

eigenvalue 0. As A∗ξ is S(TM)-valued real self-adjoint operator, A∗ξ have (m−r)
real orthonormal eigenvector fields in S(TM) and is diagonalizable. Con-
sider a frame field of eigenvectors {ξ1, . . . , ξr, Er+1, . . . , Em} of A∗ξ such that

{Er+1, . . . , Em} is an orthonormal frame field of S(TM) and A∗ξEa = κaEa
for each a ∈ {r + 1, . . . , m}. Put X = Y = Ea in (3.2), each κa is a solution
of the quadratic equation

x2 − λx = 0. (3.3)

This equation has at most two distinct solutions 0 and λ. Thus there exists a
number p ∈ {0, . . . , m − r} such that κr+1 = · · · = κr+p = 0 and κr+p+1 =
· · · = κm−r = λ, by renumbering if necessary.



38 JONG MOON SHIN

In case p = 0 or p = m− r: As M = Mr ×Mm−r ∼= Mr ×Mm−r × {x} for
any x ∈M , we show that Mp = {x} and Ms = Mm−r if p = 0, or Mp = Mm−r
and Ms = {x} if p = m− r. Thus Theorem 1.1 is true in this case.

In case 0 < p < m − r: We show that λ 6= 0. Consider the following
distributions Dp and Ds on M , and their projections Dsm

p and Dsm
s on S(TM)

respectively such that

Dp = {X ∈ Γ(TM) | A∗ξX = 0 and PX 6= 0}, Dsm
p = PDp,

Ds = {U ∈ Γ(TM) | A∗ξU = λPU and PU 6= 0}, Dsm
s = PDs.

Clearly we show that Dp ∩Ds = {0} and Dsm
p ∩Dsm

s = {0} as λ 6= 0.

For any X ∈ Γ(Dp) and U ∈ Γ(Ds), we get A∗ξPX = A∗ξX = 0 and

A∗ξPU = A∗ξU = λPU . This imply PX ∈ Γ(Dsm
p ) and PU ∈ Γ(Dsm

s ). Thus

P maps Γ(Dp) onto Γ(Dsm
p ) and Γ(Ds) onto Γ(Dsm

s ). Since PX and PU are
eigenvector fields of the real self-adjoint operator A∗ξ corresponding to the dif-

ferent eigenvalues 0 and λ respectively, we have g(PX, PU) = 0. From the
facts g(X,U) = g(PX,PU) = 0 and h`(X,U) = g(A∗ξX,U) + λg(X,U) =

λg(X,U) = 0, we show that Dp⊥g Ds and Dp⊥
h`
Ds respectively.

Since {Ea}r+1≤a≤r+p and {Eb}r+p+1≤b≤m are vector fields of Dsm
p and

Dsm
s respectively, Dsm

p and Dsm
s are mutually orthogonal vector subbundle

of S(TM) and rank S(TM) = m − r, we show that Dsm
p and Dsm

s are non-
degenerate distributions of rank p and rank (m−r−p) respectively. This result
implies S(TM) = Dsm

p ⊕orth Dsm
s .

From (3.2), we show that A∗ξ(A
∗
ξ − λP ) = (A∗ξ − λP )A∗ξ = 0. Let Y ∈

ImA∗ξ , then there exists X ∈ Γ(TM) such that Y = A∗ξX. Then we have

(A∗ξ − λP )Y = 0 and Y ∈ Γ(Ds). Thus ImA∗ξ ⊂ Γ(Ds). Since the morphism

A∗ξ maps Γ(TM) onto Γ(S(TM)), we have ImA∗ξ ⊂ Γ(Dsm
s ). By duality, we

also have Im(A∗ξ − λP ) ⊂ Γ(Dsm
p ).

For any X, Y ∈ Γ(Dsm
p ) and U, V ∈ Γ(Dsm

s ), applying ∇X to h`(U, V ) =

2λg(U, V ) and∇U to h`(X,Y ) = λg(X,Y ) and then, using (2.10), (3.1) and the
facts ∇h` = 0 and Dsm

p ⊥g Dsm
s , we have (Xλ)g(U, V ) = 0 and (Uλ)g(X,Y ) =

0, i.e., Xλ = 0 and Uλ = 0. This imply Zλ = 0 for all Z ∈ Γ(S(TM)). Thus
λ is a constant on S(TM).

For any X, Y, Z ∈ Γ(Dsm
p ), applying ∇Z to h`(X,Y ) = λg(X,Y ) and using

(3.1) and the facts ∇h` = 0 and λ is a non-zero constant on S(TM), we have
(∇

Z
g)(X,Y ) = 0, i.e.,

π(X)g(Y,Z) + π(Y )g(X,Z) = 0. (3.4)

due to (2.10). Using this equation and the fact Dsm
p is non-degenerate, we have

π(X)Y = −π(Y )X. (3.5)
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Taking the skew-symmetric part of (3.4) for X and Z, we get π(X)g(Y,Z) =
π(Z)g(X,Y ), from which we have π(X)Z = π(Z)X. Replacing Z by Y to this
result, we obtain

π(X)Y = π(Y )X. (3.6)

From (3.5) and (3.6), we obtain π(X) = 0 for all X ∈ Γ(Dsm
p ). By duality, we

have π(U) = 0 for all U ∈ Γ(Dsm
s ). Thus π = 0 on S(TM) and ∇g = 0 on

S(TM).

For any X, Y ∈ Γ(Dsm
p ) and U, V ∈ Γ(Dsm

s ), applying ∇X to h`(Y,U) = 0

and ∇V to h`(Y,U) = 0 and using (2.10), (3.1) and the facts ∇h` = 0 and
∇g = 0 on S(TM), we have

g(A∗ξ∇XY, U) = 0, g((A∗ξ − λP )∇V U, Y ) = 0.

Since ImA∗ξ ⊂ Γ(Dsm
s ) and Dsm

s is non-degenerate, we have A∗ξ∇XY = 0.

Thus ∇XY ∈ Γ(Dp). By duality, we have ∇V U ∈ Γ(Ds). As S(TM) is totally
geodesic in M , this results imply that ∇XY ∈ Γ(Dsm

p ) for all X, Y ∈ Γ(Dsm
p )

and ∇V U ∈ Γ(Dsm
s ) for all U, V ∈ Γ(Dsm

s ). Thus Dsm
p and Dsm

s are integrable
and auto-parallel distributions with respect to the connections ∇ on M and
∇∗ on S(TM).

Since the leaf M∗ of S(TM) is a Riemannian manifold and S(TM) =
Dsm
p ⊕orth Dsm

s , where Dsm
p and Dsm

s are auto-parallel distributions with re-
spect to the induced connection ∇∗ on S(TM), by the decomposition theorem
of de Rham [9], we have Mm−r = Mp ×Ms, where Mp and Ms are leaves of
Dsm
p and Dsm

s respectively. Thus we have Theorem 1.1.

Corollary 3.1. Let M be a lightlike hypersurface or 1-lightlike submanifold of
a Lorentz manifold M̄ admitting a semi-symmetric non-metric connection. If
the screen distribution S(TM) is totally geodesic inM and the (lightlike) second
fundamental form of M is parallel, then M is locally a product manifold L ×
Mp×Ms, where L is a null curve tangent to the radical distribution Rad(TM),
and Mp and Ms are leaves of some integrable distributions of M and p + s =
dimS(TM).

Remark 1. Instead of the condition M is an r-lightlike submanifold of Theorem
1.1, even though we use the condition M is a co-isotropic submanifold, it is easy
to find that we can establish the same result Theorem 1.1. But, for isotropic
or totally lightlike submanifolds M , Theorem 1.1 can not establish because
S(TM) = {0} and h`i does not exist for all i.
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[5] Yaşar, E., Çöken, A. C. and Yücesan, A., Lightlike hypersurfaces in semi-Riemannian

manifold with semi-symmetric non-metric connection, Math. Scand. 102, 2008, 253-264.

[6] Jin, D. H., Einstein lightlike hypersurfaces of a Lorentz space form with a semi-symmetric
non-metric connection, Bull. Korean Math. Soc. 50(4), 2013, 1367-1376.

[7] Jin, D. H., Einstein half lightlike submanifolds of a Lorentzian space form with a
semi-symmetric non-metric connection, Journal of Inequalities and Applications, 2013,

2013:403.

[8] Jin, D. H. and Lee, J. W., A classification of half lightlike submanifolds of a semi-
Riemannian manifold with a semi-symmetric non-metric connection, Bull. Korean Math.

Soc. 50(3), 2013, 705-717.
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