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COUPLED FIXED POINT THEOREMS FOR RATIONAL

INEQUALITY IN GENERALIZED METRIC SPACES

Deepak Singh, Surjeet Singh Tomar, M.S.Rathore, and Varsha Chauhan

Abstract. In modern times, coupled fixed point theorems have been rig-

orously studied by many researchers in the milieu of partially ordered G-

metric spaces using different contractive conditions. In this note, some
coupled fixed point theorems using mixed monotone property in par-

tially ordered G-metric spaces are obtained. Furthermore some theorems
by omitting the completeness on the space and continuity conditions on

function, are obtained. Our results partially generalize some existing re-

sults in the present literature. To exemplify our results and to distinguish
them from the existing ones, we equip the article with suitable examples.

1. Introduction

Taking into accounts its applications, fixed point theory has received sub-
stantial concentration through the last ninety years in many different ways.
One of the newest branches of this theory is dedicated to the study of G-
metric spaces. The notion of G- metric space was introduced by Mustafa in
collaboration with Sims[12]. This was a generalization of metric spaces in which
a non-negative real number was assigned to every triplet of elements. Mustafa
et al.[13],[14],[15],[16] studied many fixed point results for a self-mapping in
G-metric space under certain conditions. In recent times, fixed point theory
has extended rapidly in partially ordered metric spaces, that is, metric spaces
endowed with a partial ordering. Existence of fixed points in partially ordered
metric spaces was first investigated in 2004 by Ran and Reurings[19], and then
by Nieto and Lopez[18]. After wards fixed point problems have also been
considered in partially ordered probabilistic metric spaces[8], partially ordered
G-metric spaces[3],[20], partially ordered cone metric spaces[10].
Mixed monotone operators were pioneered by Guo and Lakshmikantham in
[9]. Their study has not only important theoretical meaning but also wide ap-
plications in engineering and many other fields. Particularly, a coupled fixed
point result in partially ordered metric spaces was recognized by Bhaskar and
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Lakshmikantham [4]. After the publication of this effort, several coupled fixed
point and coincidence point results have materialized in the recent literature.
Works noted in [5],[7],[1],[11],[2] are some relevant and noticeable examples.

2. Preliminaries

Definition 1. [12] Let X be a nonempty set, and let G : X ×X ×X → [0,∞)
be a function satisfying the following properties:
(G-1) G(x, y, z) = 0 if x = y = z.
(G-2) 0 < G(x, x, y), for all x, y ∈ X with x 6= y.
(G-3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with y 6= z
(G-4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ......, symmetry in all three vari-
ables,
(G-5) G(x, y, z) ≤ G(x, a, a) +G(a, y, z) for all x, y, z, a ∈ X
Then the function G is called a generalized or a G-metric on X and the pair
(X,G) is called a G-metric space.

Definition 2. [12] Let (X,G) be a G-metric space, and let {xn} be a sequence
of points ofX. We say that {xn} isG-convergent to x ∈ X if lim

n,m→∞
G(x, xn, xm) =

0, that is for any ε > 0, there is k ∈ N such that G(x, xn, xm) < ε for all
n,m ≥ k. We call x the limit of the sequence and write xn → x or lim

n→∞
xn → x

Definition 3. [12] Let (X,G) be a G-metric space, a sequence {xn} is called
G-Cauchy if for every ε > 0, there is a k ∈ N such that G(xn, xm, xl) < ε for
all n,m, l ≥ k; that is G(xn, xm, xl)→ 0 as n,m, l→∞.

Lemma 2.1. [12] Let (X,G) be a G-metric space. Then the following are
equivalent:

(1) {xn} is G-convergent to x;
(2) G(xn, xn, x)→ 0 as n→∞;
(3) G(xn, x, x)→ 0 as n→∞;
(4) G(xn, xm, x)→ 0 as n,m→∞;

Lemma 2.2. [17] Let (X,G) be a G-metric space. Then the following are
equivalent:

(1) {xn} is G-cauchy;
(2) for every ε > 0, there is k ∈ N, G(xn, xm, xm) < ε for all n,m ≥ k;

Lemma 2.3. [12] If (X,G) is a G-metric space then G(x, y, y) ≤ 2G(y, x, x)
for all x, y ∈ X.

Combining Lemmas(2.2) and Lemmas(2.3) we have the following result.

Lemma 2.4. [12] If (X,G) is a G-metric space then {xn} is G-Cauchy se-
quence if and only if for every ε > 0, there exists a positive integer N such that
G(xn, xm, xm) < ε, for all m > n ≥ N .
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Definition 4. [12] Let (X,G) and (X ′, G′) be two G-metric spaces. Then a
function f : X → X ′ is G-continuous at a point x ∈ X if and only if it is
G-Sequentially continuous at x, that is, whenever {xn} is G-convergent to x,
{f(xn)} is G-convergent to f(x).

Definition 5. [12] A G-metric space (X,G) is called symmetric G-metric space
if

G(x, y, y) = G(y, x, x) for all x, y ∈ X.

Definition 6. [12] A G-metric space is called G-complete if every G-Cauchy
sequence is G-convergent in (X,G).

Definition 7. [4] Let (X,�) be a partially ordered set and F : X ×X → X
be a mapping. The mapping F is said to have the mixed monotone property if
F is monotone non decreasing in x and is monotone non increasing in y, that
is, for any x, y ∈ X,

x1, x2 ∈ X,x1 � x2 ⇒ F (x1, y) � F (x2, y)

and

y1, y2 ∈ X, y1 � y2 ⇒ F (x, y1) � F (x, y2)

Definition 8. [4] An element (x, y) ∈ X ×X is called a coupled fixed point of
the mapping F : X ×X → X if

F (x, y) = x, F (y, x) = y

Definition 9. [6] Let (X,G) be a G-metric space. A mapping F : X×X → X
is said to be continuous if for any two G-convergent sequences {xn} and {yn}
converging to x and y then {F (xn, yn)} is G-convergent to F (x, y).

3. Main Results

Our main result runs as follows:

Theorem 3.1. Let (X,�) be a partially ordered set and G be a G-metric on
X such that (X,G) is a complete G-metric space. Let F : X × X → X be a
continuous mapping having the mixed monotone property on X. Suppose that
there exists a k ∈ [0, 1) such that

G(F (x, y), F (u, v),F (w, z)) ≤ k
(

min
{G(x, u, w) +G(y, v, z)

2
,

max
{G(u, u, w) +G(v, v, z)

2
, G(x,w,w) +G(y, z, z),

G(F (x, y), F (u, v), F (x, y)) + 4
√
G(x, u, w).G(y, v, z)

2

}})

(1)
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For all x, y, z, u, v, w ∈ X with w � u � x and y � v � z where either u 6= w or
v 6= z. If there exist x0, y0 ∈ X such that x0 � F (x0, y0) and F (y0, x0) � y0,
then F has a coupled fixed point in X, that is, there exist x, y ∈ X such that

F (x, y) = x and F (y, x) = y.

Proof: Let x0, y0 ∈ X be such that x0 � F (x0, y0) and y0 � F (y0, x0). Let
x1 = F (x0, y0) and y1 = F (y0, x0). Then x1 � x0 and y0 � y1. Again let
x2 = F (x1, y1) and y2 = F (y1, x1), we write

F 2(x0, y0) = F (F (x0, y0), F (y0, x0)) = F (x1, y1) = x2

and

F 2(y0, x0) = F (F (y0, x0), F (x0, y0)) = F (y1, x1) = y2.

Since, F has a mixed monotone property, then we have

x2 = F 2(x0, y0) = F (x1, y1) � F (x0, y0) = x1 � x0
y2 = F 2(y0, x0) = F (y1, x1) � F (y0, x0) = y1 � y0.

Continuing in this way, we construct two sequences {xn} and {yn} in X such
that

xn+1 = F (xn, yn) = Fn+1(x0, y0) = F (Fn(x0, y0), Fn(y0, x0))

and

yn+1 = F (yn, xn) = Fn+1(y0, x0) = F (Fn(y0, x0), Fn(x0, y0)).

Then for all n ≥ 0,

x0 � x1 � x2 � ... � xn � xn+1 � ... (2)

y0 � y1 � y2 � ... � yn � yn+1 � ... (3)

If for some n, we have (xn+1, yn+1) = (xn, yn), then F (xn, yn) = xn and
F (yn, xn) = yn, that is, F has a coupled fixed point. So we assume, (xn+1, yn+1) 6=
(xn, yn) for all n ≥ 0, that is, we assume that either xn+1 = F (xn, yn) 6= xn or
yn+1 = F (yn, xn) 6= yn.
Now

G(xn+1, xn+1, xn) = G(F (xn, yn), F (xn, yn), xn) = G(Fn+1(x0, y0), Fn+1(x0, y0), Fn(x0, y0))

≤ kn
(

min
{G(x1, x1, x0) +G(y1, y1, y0)

2
,

max
{G(x1, x1, x0) +G(y1, y1, y0)

2
, G(x1, x0, x0) +G(y1, y0, y0),

(G(x2, x2, x2)) + 4
√
G(x1, x1, x0).G(y1, y1, y0)

2

}})
Now, using the property G(x, x, y) ≤ 2G(x, y, y), from the above inequality, we
get

G(xn+1, xn+1, xn) ≤ kn

2
[G(x1, x1, x0) +G(y1, y1, y0)] (4)
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and

G(yn+1, yn+1, yn) = G(F (yn, xn), F (yn, xn), yn) = G(Fn+1(y0, x0), Fn+1(y0, x0), Fn(y0, x0))

≤ kn

2
[G(y1, y1, y0) +G(x1, x1, x0)]

(5)

Now we claim that (4) and (5) are true for all n ≥ 0. For n = 1, we have

G(x2, x2, x1) = G(F (x1, y1), F (x1, y1), xn) = G(F 2(x0, y0), F 2(x0, y0), F (x0, y0))

≤ k
(

min
{G(x1, x1, x0) +G(y1, y1, y0)

2
,

max
{G(x1, x1, x0) +G(y1, y1, y0)

2
, G(x1, x0, x0) +G(y1, y0, y0),

(G(x2, x2, x2)) + 4
√
G(x1, x1, x0).G(y1, y1, y0)

2

}})
≤ k

2
[G(x1, x1, x0) +G(y1, y1, y0)]

Similarly we can prove that

G(y2, y2, y1) =
k

2
[G(y1, y1, y0) +G(x1, x1, x0)]

Thus (4) and (5) are true for n = 1.
Now we assume that (4) and (5) are true for n = m, that is

G(xm+1, xm+1, xm) ≤ km

2
[G(x1, x1, x0) +G(y1, y1, y0)]

and

G(ym+1, ym+1, ym) ≤ km

2
[G(y1, y1, y0) +G(x1, x1, x0)]

Now for n = m+ 1, we have

G(xm+2, xm+2, xm+1) = G(F (xm+1, ym+1), F (xm+1, ym+1), F (xm, ym)

≤ k
(

min
{G(xm+1, xm+1, xm) +G(ym+1, ym+1, ym)

2
,

max
{G(xm+1, xm+1, xm) +G(ym+1, ym+1, ym)

2
,

G(xm+1, xm, xm) +G(ym+1, ym, ym),

G(xm+2, xm+2, xm+2) + 4
√
G(xm+1, xm+1, xm).G(ym+1, ym+1, ym)

2

}})
≤ k

2
[G(xm+1, xm+1, xm) +G(ym+1, ym+1, ym)]

≤ k

2

[km
2

(G(x1, x1, x0) +G(y1, y1, y0)) +
km

2
(G(y1, y1, y0) +G(x1, x1, x0))

]
≤ km+1

2
[G(x1, x1, x0) +G(y1, y1, y0)]
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Similarly, we can prove that

G(ym+2, ym+2, ym+1) ≤ km+1

2
[G(x1, x1, x0) +G(y1, y1, y0)]

Then, by induction, (4) and (5) are established for all n ≥ 0.
Using the rectangle inequality, for all positive integers n,m,where n < m, we
get

G(xm, xm, xn) ≤ G(xm, xm, xm−1) +G(xm−1, xm−1, xn)

≤ G(xm, xm, xm−1) +G(xm−1, xm−1, xm−2) +G(xm−2, xm−2, xn)

−−−− −−−− −−−−
≤ G(xm, xm, xm−1) +G(xm−1, xm−1, xm−2) + ...+G(xn+1, xn+1, xn)

≤ km−1

2
[G(x1, x1, x0) +G(y1, y1, y0)] +

km−2

2
[G(x1, x1, x0) +G(y1, y1, y0)]+

+ ...+
kn

2
[G(x1, x1, x0) +G(y1, y1, y0)]

≤ km−1 + km−2 + ...+ kn

2
[G(x1, x1, x0) +G(y1, y1, y0)]

=
kn(1 + k + k2 + ...+ km−n−1)

2
[G(x1, x1, x0) +G(y1, y1, y0)]

<
kn

2(1− k)
[G(x1, x1, x0) +G(y1, y1, y0)]

That is,

G(xm, xm, xn) ≤ kn

2(1− k)
[G(x1, x1, x0) +G(y1, y1, y0)]

Thus,

lim
m,n→∞

G(xm, xm, xn) = 0

Thus, by Lemma(2.4), {xn}, that is, {Fn(x0, y0)} is a Cauchy sequence and
hence is convergent in the complete G-metric space X.
Let xn → x (say) as n→∞.
Similarly, {yn}, that is, {Fn(y0, x0)} is a Cauchy sequence and hence is con-
vergent in the complete G-metric space X.
Let yn → y (say) as n→∞.
Now we show that F has a coupled fixed point in X.
By (4), we have

G(xn+1, xn+1, xn) = G(F (xn, yn), F (xn, yn), xn) ≤ kn

2
[G(x1, x1, x0)+G(y1, y1, y0)]

Taking the limit as n→∞ and using the fact that F is continuous, we have
G(F (x, y), F (x, y), x) ≤ 0, which implies that F (x, y) = x.
Similarly, we get F (y, x) = y.
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This gives an end to the proof.
In the next theorem, we use the following definition.

Definition 10. Let (X,�) be a partially ordered set and G be a G-metric on
X. We say that (X,G,�) is regular if the following conditions hold:

(1) If the non-decreasing sequence {xn} is such that xn → x, then xn � x
for all n.

(2) If the non-increasing sequence {yn} is such that yn → y, then yn � y
for all n.

Theorem 3.2. Let (X,�) be a partially ordered set and G be a G-metric on
X such that (X,G,�) is regular. Let F : X×X → X be a continuous mapping
having the mixed monotone property on X. Suppose that there exists a k ∈ [0, 1)
such that

G(F (x, y), F (u, v),F (w, z)) ≤ k
(

min
{G(x, u, w) +G(y, v, z)

2
,

max
{G(u, u, w) +G(v, v, z)

2
, G(x,w,w) +G(y, z, z),

G(F (x, y), F (u, v), F (x, y)) + 4
√
G(x, u, w).G(y, v, z)

2

}})

(6)

For all x, y, z, u, v, w ∈ X with w � u � x and y � v � z where either u 6= w or
v 6= z. If there exist x0, y0 ∈ X such that x0 � F (x0, y0) and F (y0, x0) � y0,
then F has a coupled fixed point in X, that is, there exist x, y ∈ X such that

F (x, y) = x and F (y, x) = y.

Proof: Proceeding exactly as in Theorem(3.1), we have that {xn} and {yn}
are Cauchy sequences in the complete G-metric space (X,G). Then, there
exist x, y ∈ X such that xn → x and yn → y. Since {xn}is non-deceasing
and {yn} is non-increasing, using the regularity of (X,G,�), we have xn � x
and ynsucceqy for all n ≥ 0. If (xn, yn) = (x, y) for some n ≥ 0, then by
construction, xn+1 = x and yn+1 = y, which implies that (x, y) is a coupled
fixed point. So we assume that either xn 6= x or yn 6= y. Using the rectangle
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inequality and (1), we get

G(F (x, y), x, x) ≤ G(F (x, y), xn+1, xn+1) +G(xn+1, x, x)

= G(F (xn, yn), F (xn, yn), F (x, y)) +G(F (xn, yn), x, x)

≤ k
(

min
{G(xn, xn, x) +G(yn, yn, y)

2
,

max
{G(xn, xn, x) +G(yn, yn, y)

2
, G(xn, x, x) +G(yn, y, y),

G(xn+1, xn+1, xn+1) + 4
√
G(xn, xn, x).G(yn, yn, y)

2

}})
+G(xn+1, x, x)

≤ k

2
[G(xn, xn, x) +G(yn, yn, y)] +G(xn+1, x, x)

Taking as n→∞ in the above inequality we obtain G(F (x, y), x, x) = 0, that
is, F (x, y) = x.
Similarly, we can show that F (y, x) = y.
This complete the proof of the theorem.

Theorem 3.3. Let (X,�) be a partially ordered set and G be a G-metric on
X such that (X,G) is a complete G-metric space. Let F : X × X → X be a
continuous mapping having the mixed monotone property on X and such that
F (x, y) � F (y, x) whenever x � y. Suppose that there exists a k ∈ [0, 1) such
that for all x, y, z, u, v, w ∈ X, the inequality(1)holds, whenever w � u � x and
y � v � z and x ≺ y where either u 6= w or v 6= z.
If there exists x0, y0 ∈ X such that x0 � y0, x0 � F (x0, y0) and F (y0, x0) � y0,
then F has a coupled fixed point in X, that is, there exist x, y ∈ X such that

F (x, y) = x and F (y, x) = y.

Proof:By the condition of the theorem there exist x0, y0 ∈ X such that
x0 � F (x0, y0) and F (y0, x0) � y0.
We define x1, y1 ∈ X as x1 = F (x0, y0) � x0 and y1 = F (y0, x0) � y0.
Since x0 � y0, we have, by a condition of the theorem, F (x0, y0) � F (y0, x0).
Hence, x0 � x1 = F (x0, y0) � F (y0, x0) = y1 � y0.
Continuing the above procedure we have two sequences {xn} and {yn} recur-
sively as follows. For all n ≥ 1,

xn = F (x(n− 1), y(n− 1)) and yn = F (y(n− 1), x(n− 1)), (7)

Such that

x0 � F (x0, y0) = x1 � ... � F (x(n−1), y(n−1)) = xn � ... � yn = F (y(n−1), x(n−1)) � ... � y1 = F (y0, x0) � y0
(8)

In particular, we have for all n ≥ 0,

xn � F (xn, yn) = xn+1 � yn+1 = F (yn, xn) � yn.
If xn = yn = c (say) for some n, then c � F (c, c) � F (c, c) � c.
This shows that c = F (c, c).
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Thus (c, c) is a coupled fixed point.
Hence we assume that

xn ≺ yn, for all n ≥ 0. (9)

Further, for the same reason as stated in Theorem(3.1), we assume that (xn, yn) 6=
(xn+1, yn+1).
Then, in view of (9), for all n ≥ 0, the inequality(1) will hold with

x = xn+2, u = xn+1, w = xn, y = yn, v = yn+1 and z = yn+2

The rest of the proof is completed by repeating the same steps as in Theorem(3.1).

Theorem 3.4. If in Theorem(3.3), in place of the continuity of F , we assume
that the conditions of Definition(10) hold, then F has a coupled fixed point.

Remark 1. Since every G-metric on X defines a metric space dG on X by

dG = G(x, y, y) +G(y, x, x) for all x, y ∈ X.

But, due to the condition that u 6= w and v 6= z, the inequality(1) does not
reduce to any metric inequality with metric dG. Thus, all the above results do
not reduce to fixed point problems in the corresponding metric space (X, dG).

Following example substantiates the validity of hypothesis of Theorem(3.1).
Example 1: Let X = R with usual ordering. Define G : X3 → X by

G(x, y, z) = max {|x− y|, |y − z|, |x− z|}, for all x, y, z ∈ X

Then (X,G,≤) is a complete partially ordered G-metric space. Let F : X ×
X → X, defined by

F (x, y) =
x− y

16

Clearly, the mapping F has the mixed monotone property. Let x, u, v, y, z, w ∈
X be such that x ≥ u ≥ w and y ≤ v ≤ z. Now, we will check that inequality(1)
of Theorem(3.1) is fulfilled for all x, u, v, y, z, w ∈ X.
From the L.H.S. of inequality(1), we have

G(F (x, y), F (u, v), F (w, z)) = G
(x− y

16
,
u− v

16
,
w − z

16

)
=

1

16
(|(x− y)− (w − z)|)

=
1

16
(|(x− w) + (z − y)|)

≤ 1

16
(|x− w|+ |y − z|)

(10)
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From the R.H.S. of inequality(1), we have

k
(

min
{G(x, u, w) +G(y, v, z)

2
,max

{G(u, u, w) +G(v, v, z)

2
, G(x,w,w) +G(y, z, z)

G(F (x, y), F (u, v), F (x, y)) + 4
√
G(x, u, w).G(y, v, z)

2

}})
= k

(
min

{max {|x− u|, |u− w|, |x− w|}+ max {|y − v|, |v − z|, |y − z|}
2

,

max
{max {|u− u|, |u− w|, |u− w|}+ max {|v − v|, |v − z|, |v − z|}

2
,

max {|x− w|, |w − w|, |x− w|}+ max {|y − z|, |z − z|, |y − z|}

G
(

x−y
16 ,

u−v
16 ,

x−y
16

)
+ 4
√

max {|x− u|, |u− w|, |x− w|}.max {|y − v|, |v − z|, |y − z|}

2

}})
= k

(
min

{ |x− w|+ |y − z|
2

,max
{ |u− w|+ |v − z|

2
, |x− w|+ |y − z|

1

32
G(x− y, u− v, x− y) + 2

√
|x− w|.|y − z|

}})
= k

(
min

{ |x− w|+ |y − z|
2

,max
{ |u− w|+ |v − z|

2
, |x− w|+ |y − z|

1

32
(|(x− y)− (u− v)|) + 2

√
|x− w|.|y − z|

}})
= k

(
min

{ |x− w|+ |y − z|
2

, |x− w|+ |y − z|
})

= k
|x− w|+ |y − z|

2

(11)

Hence, from (10) and (11), the contractive condition of Theorem(3.1) is satisfied
for k ∈ [ 18 , 1).
Thus, all the conditions of Theorem(3.1) are fulfilled and F has a coupled fixed
point in X. (which is (0, 0)).
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