DOI QR코드

DOI QR Code

Noninformative priors for the common shape parameter of several inverse Gaussian distributions

  • Kang, Sang Gil (Department of Computer and Data Information, Sangji University) ;
  • Kim, Dal Ho (Department of Statistics, Kyungpook National University) ;
  • Lee, Woo Dong (Department of Data Management, Daegu Haany University)
  • Received : 2014.11.02
  • Accepted : 2014.12.26
  • Published : 2015.01.31

Abstract

In this paper, we develop the noninformative priors for the common shape parameter of several inverse Gaussian distributions. Specially, we want to develop noninformative priors which satisfy certain objective criterion. The probability matching priors and reference priors of the common shape parameter will be developed. It turns out that the second order matching prior does not exist. The reference priors satisfy the first order matching criterion, but Jeffrey's prior is not the first order matching prior. We showed that the proposed reference prior matches the target coverage probabilities in a frequentist sense through simulation study, and an example based on real data is given.

Keywords

References

  1. Bai, Z. D., Wang, K. Y. and Wong, W. K. (2011) Mean-variance ratio test, a complement to coefficient of variation test and Sharpe ratio test. Statistics and Probability Letters, 81, 1078-1085 https://doi.org/10.1016/j.spl.2011.02.035
  2. Berger, J. O. and Bernardo, J. M. (1989). Estimating a product of means : Bayesian analysis with reference priors. Journal of the American Statistical Association, 84, 200-207. https://doi.org/10.1080/01621459.1989.10478756
  3. Berger, J. O. and Bernardo, J. M. (1992). On the development of reference priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford, 35-60.
  4. Bernardo, J. M. (1979). Reference posterior distributions for Bayesian inference (with discussion). Journal of Royal Statistical Society B, 41, 113-147.
  5. Chhikara, R. S. and Folks, L. (1989). The inverse Gaussian distribution; Theory, methodology and applications, Marcel Dekker, New York.
  6. Cox, D. R. and Reid, N. (1987). Orthogonal parameters and approximate conditional inference (with discussion). Journal of Royal Statistical Society B, 49, 1-39.
  7. Datta, G. S. and Ghosh, M. (1995). Some remarks on noninformative priors. Journal of the American Statistical Association, 90, 1357-1363. https://doi.org/10.1080/01621459.1995.10476640
  8. Datta, G. S. and Ghosh, M. (1996). On the invariance of noninformative priors. The Annals of Statistics, 24, 141-159. https://doi.org/10.1214/aos/1033066203
  9. Datta, G. S. and Mukerjee, R. (2004) Probability matching priors: Higher order asymptotics, Springer, New York.
  10. DiCiccio, T. J. and Stern, S. E. (1994). Frequentist and Bayesian Bartlett correction of test statistics based on adjusted profile likelihood. Journal of Royal Statistical Society B, 56, 397-408.
  11. Ghosh, J. K. and Mukerjee, R. (1992). Noninformative priors (with discussion). In Bayesian Statistics IV, edited by J. M. Bernardo, et al., Oxford University Press, Oxford.
  12. Kang, S. G. (2011). Noninformative priors for the common mean in log-normal distributions. Journal of the Korean Data & Information Science Society, 22, 1241-1250.
  13. Kang, S. G., Kim, D. H. and Lee, W. D. (2014). Noninformative priors for the log-logistic distribution. Journal of the Korean Data & Information Science Society, 25, 227-235. https://doi.org/10.7465/jkdi.2014.25.1.227
  14. Mukerjee, R. and Dey, D. K. (1993). Frequentist validity of posterior quantiles in the presence of a nuisance parameter : Higher order asymptotics. Biometrika, 80, 499-505. https://doi.org/10.1093/biomet/80.3.499
  15. Mukerjee, R. and Ghosh, M. (1997). Second order probability matching priors. Biometrika, 84, 970-975.
  16. Pratt, J. W. (1964), Robustness of some procedures for the two-sample location problem, Journal of the American Statistical Association, 59, 665-680.
  17. Niu, C., Guo, X., Xu, W. and Zhu, L. (2014). Testing equality of shape parameters in several inverse Gaussian populations. Metrika, 77, 795-809. https://doi.org/10.1007/s00184-013-0465-5
  18. Seshadri, V. (1999). The inverse Gaussian distribution; Statistical theory and applications, Springer Verlag, New York.
  19. Stein, C. (1985). On the coverage probability of confidence sets based on a prior distribution. Sequential Methods in Statistics, Banach Center Publications, 16, 485-514.
  20. Tian, L. L. (2006) Testing equality of inverse Gaussian means under heterogeneity, based on generalized test variable. Computational Statistics and Data Analysis, 51, 1156-1162. https://doi.org/10.1016/j.csda.2005.11.012
  21. Tibshirani, R. (1989). Noninformative priors for one parameter of many. Biometrika, 76, 604-608. https://doi.org/10.1093/biomet/76.3.604
  22. Welch, B. L. and Peers, H. W. (1963). On formulae for confidence points based on integrals of weighted likelihood. Journal of Royal Statistical Society B, 25, 318-329.
  23. Ye, R. D., Ma, T. F. and Wang, S. G. (2010) Inferences on the common mean of several inverse Gaussian populations. Computational Statistics and Data Analysis, 54, 906-915. https://doi.org/10.1016/j.csda.2009.09.039

Cited by

  1. Bayesian testing for the homogeneity of the shape parameters of several inverse Gaussian distributions vol.27, pp.3, 2016, https://doi.org/10.7465/jkdi.2016.27.3.835