DOI QR코드

DOI QR Code

수술현미경에서의 다중형광영상을 이용한 뇌종양과 혈관영상 검출 시스템 연구

Study of a Brain Tumor and Blood Vessel Detection System Using Multiple Fluorescence Imaging by a Surgical Microscope

  • 이현민 (국립암센터 융합기술연구부 의공학연구과) ;
  • 김홍래 (국립암센터 융합기술연구부 의공학연구과) ;
  • 윤웅배 (국립암센터 융합기술연구부 의공학연구과) ;
  • 김영재 (국립암센터 융합기술연구부 의공학연구과) ;
  • 김광기 (국립암센터 융합기술연구부 의공학연구과) ;
  • 김석기 (국립암센터 융합기술연구부 분자영상치료연구과) ;
  • 유헌 (국립암센터 이행성 임상 제 2연구부 특수암연구과) ;
  • 이승훈 (국립암센터 이행성 임상 제 2연구부 특수암연구과) ;
  • 신민선 ((주)바이오넷 연구기획실) ;
  • 권기철 (충북대학교 전자정보대학 정보통신공학)
  • Lee, Hyun Min (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center) ;
  • Kim, Hong Rae (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center) ;
  • Yoon, Woong Bae (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center) ;
  • Kim, Young Jae (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center) ;
  • Kim, Kwang Gi (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center) ;
  • Kim, Seok Ki (Molecular Imaging & Therapy Branch, National Cancer Center) ;
  • Yoo, Heon (Specific Organs Cancer Branch & Hospital, National Cancer Center) ;
  • Lee, Seung Hoon (Specific Organs Cancer Branch & Hospital, National Cancer Center) ;
  • Shin, Min Sun (Reserch & Development Planning Department, Bionet) ;
  • Kwon, Ki Chul (Department of Electrical and Computer Engineering, Chungbuk National University)
  • 투고 : 2014.10.06
  • 심사 : 2015.01.05
  • 발행 : 2015.02.25

초록

본 연구에서는 뇌 종양 수술에서 다수의 광원과 빔 스플리터 모듈을 사용해 종양과 혈관의 형광영상을 동시에 검출하고 획득한 형광영상을 동일한 디스플레이 장치에 표시함으로써 시술자에게 종양과 혈관의 정확한 정보를 실시간으로 제공할 수 있는 현미경 시스템을 제안한다. 5-ALA(5-Aminolevulinic acid) 와 ICG(Indocyanine green) 의 형광영상의 동시 검출을 위해 빔 스플리터(beam-splitter : BS)모듈을 사용하였고 5-ALA는 600nm, ICG는 800nm이상의 파장 대역에서 가장 효율이 뛰어나도록 구성하였다. 빔 스플리터 모듈은 파장 대역에 따라 광학기기의 구조를 변경할 수 있고 필터를 탈, 착 가능한 구조로 설계하여 필요에 따라 빔 스플리터와 필터의 종류를 변경할 수 있으며 5-ALA 및 ICG 이외의 형광염료를 사용한 시술에서 사용할 수 있다. 빔 스플리터 모듈을 통한 형광영상은 5-ALA는 가시광역, ICG는 근적외선 영역을 검출 할 수 있는 CCD 카메라를 장착해 동일한 디스플레이에서 확인할 수 있고 획득한 형광영상은 닮음 변환(similarity transform)을 이용해 원영상과 정합하여 실시간으로 시술자에게 제공하는 시스템을 구현하였다.

In this paper, we propose a microscope system for detecting both a tumor and blood vessels in brain tumor surgery as fluorescence images by using multiple light sources and a beam-splitter module. The proposed method displays fluorescent images of the tumor and blood vessels on the same display device and also provides accurate information about them to the operator. To acquire a fluorescence image, we utilized 5-ALA (5-aminolevulinic acid) for the tumor and ICG (Indocyanine green) for blood vessels, and we used a beam-splitter module combined with a microscope for simultaneous detection of both. The beam-splitter module showed the best performance at 600 nm for 5-ALA and above 800 nm for ICG. The beam-splitter is flexible to enable diverse objective setups and designed to mount a filter easily, so beam-splitter and filter can be changed as needed, and other fluorescent dyes besides 5-ALA and ICG are available. The fluorescent images of the tumor and the blood vessels can be displayed on the same monitor through the beam-splitter module with a CCD camera. For ICG, a CCD that can detect the near-infrared region is needed. This system provides the acquired fluorescent image to an operator in real time, matching it to the original image through a similarity transform.

키워드

참고문헌

  1. M. D. Prados and C. B. Wilson, "Neoplasms of the central nervous system," Cancer Medicine 1, 1471-1514 (1997).
  2. http://ncc.re.kr/hospital/centers/center07/clinic04/content_3396.jsp
  3. F. Acerbi, C. Cavallo, M. Broggi, R. Cordella, E. Anghileri, M. Eoli, M. Schiariti, G. Broggi, and P. Ferroli, "Fluoresceinguided surgery for malignant gliomas: A review," Neurosurgical Review 37, 547-557 (2014). https://doi.org/10.1007/s10143-014-0546-6
  4. J. W. Park, D. K. Sohn, C. W. Hong, K. S. Han, D. H. Choi, H. J. Chang, S. B. Lim, H. S. Choi, and S. Y. Jeong, "The usefulness of preoperative colonoscopic tattooing using a saline test injection method with prepackaged sterile India ink for localization in laparoscopic colorectal surgery," Surg. Endosc. 22, 501-505 (2008) https://doi.org/10.1007/s00464-007-9495-2
  5. I. Arteaga-Gonzalez, A. Martin-Malagon, E. M. Fernandez, J. Arranz-Duran, A. Parra-Blanco, D. Nicolas-Perez, E. Quintero-Carrion, H. D. Luis, and A. Carrillo-Pallares, "The use of preoperative endoscopic tattooing in laparoscopic colorectal cancer surgery for endoscopically advanced tumors: A prospective comparative clinical study," World J. Surg. 3, 605-611 (2006)
  6. B. Reinhold, "Latest results of 5-ALA-based fluorescence diagnosis and other medical disciplines," Proc. SPIE 3563 (1999).
  7. K. E. Anderson, G. S. Drummond, U. Freddara, and M. K. Sardana, "Biochimicaet biophysica acta," BBA 676, 289-299 (1981).
  8. J. C. Kennedy, S. L. Marcus, and R. H. Pottier, "Photodynamic therapy (PDT) and photodiagnosis(PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): Mechanisms and clinical results," J. Clin. Laser Med. Surg. 14, 289-304 (1996).
  9. Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug, K. E. Giercksky, and J. M. Nesland, "5-aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges," Cancer 79, 2282-2308 (1997). https://doi.org/10.1002/(SICI)1097-0142(19970615)79:12<2282::AID-CNCR2>3.0.CO;2-O
  10. C. J. Kelty, N. J. Brown, M. W. Reed, and R. Ackroyd, "The use of 5-aminolaevulinic acid as a photosensitizer in photodynamic therapy and photodiagnosis," Photochem. Photobiol. Sci. 1, 158-168 (2002). https://doi.org/10.1039/b201027p
  11. W. Stummer, A. Novotny, H. Stepp, C. Goetz, K. Bise, and H. J. Reulen, "Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: A prospective study in 52 consecutive patients," J. Neurosurg. 93, 1003-1013 (2000). https://doi.org/10.3171/jns.2000.93.6.1003
  12. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, and H. J. Reulen, "Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: A randomised controlled multicenter phase III trial," Lancet Oncol. 7, 392-401 (2006). https://doi.org/10.1016/S1470-2045(06)70665-9
  13. T. J. Alander, I. Kaartinen, A. Laakso, T. Patila, T. Spillmann, V. V. Tuchin, M. Venermo, and P. Valisuo, "A review of indocyanine green fluorescent imaging in surgery," International Journal of Biomedical Imaging 2012, 1-6 (2012).
  14. K. J. Baker, "Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins," Proc. Soc. Exp. Biol. Med. 122, 957-963 (1966). https://doi.org/10.3181/00379727-122-31299
  15. C. M. Leevy and J. Bender, "Physiology of dye extraction by the liver: Comparative studies of sulfobromophthalein and indocyanine green," Ann. NY Acad. Sci. 111, 161-176 (1963).
  16. C. A. Goresky, "Initial distribution and rate of uptake of sulfobromophthalein in the liver," Am. J. Physiol. 207, 13-26 (1964).
  17. Y. Liu, A. Q. Bauer, W. J. Akers, G. Sudlow, K. Liang, D. Shen, M. Y. Berezin, J. P. Culver, and S. Achilefu, "Hands-free, wireless goggles for near-infrared fluorescence and real-time image guided surgery," Surgery 149, 689-698 (2011). https://doi.org/10.1016/j.surg.2011.02.007

피인용 문헌

  1. Fluorescent property of indocyanine green (ICG) rubber ring using LED and laser light sources vol.7, pp.5, 2016, https://doi.org/10.1364/BOE.7.001637