References
-
S. B. Yun and Y. T. Lee, Effect of addition of cosolvent
$\gamma$ --butyrolactone on morphology of polysulfone hollow fiber membranes, Appl. Chem. Eng., 25, 274-280 (2014). https://doi.org/10.14478/ace.2014.1026 - S. M. Hosseini, S. S. Madaeni, A. R. Heidari, and A. Amirimehr, Preparation and characterization of ion-selective polyvinyl chloride based heterogeneous cation exchange membrane modified by magnetic iron-nickel oxide nanoparticles, Desalination, 284, 191-199 (2012). https://doi.org/10.1016/j.desal.2011.08.057
- R. K. Nagarale, G. S. Gohil, and V. K. Shahi, Recent developments on ion-exchange membranes and electro-membrane processes, Adv. Colloid Interface Sci., 119, 97-130 (2006). https://doi.org/10.1016/j.cis.2005.09.005
- K. K. Lee, T. H. Kim, T. S. Hwang, and Y. T. Hong, Novel Sulfonated Poly(arylene ether sulfone) Composite Membranes Containing Tetraethyl Orthosilicate (TEOS) for PEMFC Application, Membr. J., 20, 278-289 (2010).
- Q. Luo, H. Zhang, J. Chen, D. You, C. Sun, and Y. Zhang, Preparation and characterization of Nafion/SPEEK layered composite membrane and its application in vanadium redox flow battery, J. Membr. Sci., 325, 553-558 (2008). https://doi.org/10.1016/j.memsci.2008.08.025
- V. Compan, E. Riande, F. J. Fernandez-Carretero, N. P. Berezina, and A. R. Sytcheva, Influence of polyaniline intercalations on the conductivity and permselectivity of perfluorinated cation-exchange membranes, J. Membr. Sci., 318, 255-263 (2008). https://doi.org/10.1016/j.memsci.2008.02.048
-
A. G. Kannan, N. R. Choudhury, and N. K. Dutta, In situ modification of
$Nafion^{(R)}$ membranes with phospho-silicate for improved water retention and proton conduction, J. Membr. Sci., 333, 50-58 (2009). https://doi.org/10.1016/j.memsci.2009.01.048 - C. Barth, M. C. Goncalves, A. T. N. Pires, J. Roeder, and B. A. Wolf, Asymmetric polysulfone and polyethersulfone membranes: effects of thermodynamic conditions during formation on their performance, J. Membr. Sci., 169, 287-299 (2000). https://doi.org/10.1016/S0376-7388(99)00344-0
- J. F. Blanco, Q. T. Nguyen, and P. Schaetzel, Novel hydrophilic membrane materials: sulfonated polyethersulfone Cardo, J. Membr. Sci., 186, 267-279 (2001). https://doi.org/10.1016/S0376-7388(01)00331-3
- B. Piluharto, V. Suendo, T. Ciptati, and C. L. Radiman, Strong correlation between membrane effective fixed charge and proton conductivity in the sulfonated polysulfone cation-exchange membranes, Ionics, 17, 229-238 (2011). https://doi.org/10.1007/s11581-011-0537-3
- C. Klaysom, B. P. Ladewig, G. Q. Lu, and L. Wang, Preparation and characterization of sulfonated polyethersulfone for cation-exchange membranes, J. Membr. Sci., 368, 48-53 (2011). https://doi.org/10.1016/j.memsci.2010.11.006
- S. Zhou, J. Kim, and D. Kim, Cross-linked poly (ether ether ketone) membranes with pendant sulfonic acid groups for fuel cell applications, J. Membr. Sci., 348, 319-325 (2010). https://doi.org/10.1016/j.memsci.2009.11.015
- W. Wei, H. Zhang, X. Li, Z. Mai, and H. Zhang, Poly (tetrafluoroethylene) reinforced sulfonated poly (ether ether ketone) membranes for vanadium redox flow battery application, J. Power Sources, 208, 421-425 (2012). https://doi.org/10.1016/j.jpowsour.2012.02.047
- Y. Zhang, J. Li, H. Zhang, S. Zhang, and X. Huang, Sulfonated polyimide membranes with different non-sulfonated diamines for vanadium redox battery applications, Electrochim. Acta, 150, 114-121 (2014). https://doi.org/10.1016/j.electacta.2014.10.084
- T. Yasuda, S. I. Nakamura, Y. Honda, K. Kinugawa, S. Y. Lee, and M. Watanabe, Effects of Polymer Structure on Properties of Sulfonated Polyimide/Protic Ionic Liquid Composite Membranes for Nonhumidified Fuel Cell Applications, ACS Appl. Materials & Interfaces, 4, 1783-1790 (2012). https://doi.org/10.1021/am300031k
- K. Yaguchi, K. Chen, N. Endo, M. Higa, and K. I. Okamoto, Crosslinked membranes of sulfonated polyimides for polymer electrolyte fuel cell applications, J. Power Sources, 195, 4676-4684 (2010). https://doi.org/10.1016/j.jpowsour.2010.01.081
- G. Couture, A. Alaaeddine, F. Boschet, and B. Ameduri, Polymeric materials as anion-exchange membranes for alkaline fuel cells, Prog. Polym. Sci., 36, 1521-1557 (2011). https://doi.org/10.1016/j.progpolymsci.2011.04.004
- G. Merle, M. Wessling, and K. Nijmeijer, Anion exchange membranes for alkaline fuel cells: A review, J. Membr. Sci., 377, 1-35 (2011). https://doi.org/10.1016/j.memsci.2011.04.043
- J. H. Hong, Preparation and characterization of weak-base anion exchange membrane, J. Ind. Eng. Chem., 17, 208-212 (2011). https://doi.org/10.1016/j.jiec.2011.02.002
- M. Y. Kim. K. J. Kim, and H. Kang, Preparation of Anion Exchange Membranes of Cross-linked Poly((vinylbenzyl) trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol), Appl. Chem. Eng., 21, 621-626 (2010).
- N. T. Rebeck, Y. Li, and D. M. Knauss, Poly (phenylene oxide) copolymer anion exchange membranes, J. Polym. Sci. Pt. B-Polym. Phys., 51, 1770-1778 (2013). https://doi.org/10.1002/polb.23245
- Y. Xiong, Q. L. Liu, Q. G. Zhang, and A. M. Zhu, Synthesis and characterization of cross-linked quaternized poly (vinyl alcohol)/chitosan composite anion exchange membranes for fuel cells, J. Power Sources, 183, 447-453 (2008). https://doi.org/10.1016/j.jpowsour.2008.06.004
- Y. Cao, H. J. Wei, and Z. N. Xia, Advances in microwave assisted synthesis of ordered mesoporous materials, Trans. Nonferrous Met. Soc. China, 19, s656-s664 (2009). https://doi.org/10.1016/S1003-6326(10)60127-6
- J. H. Park, S. Y. Bong, C. H. Ryu, and G. J. Hwang, Study on the preparation of polyvinyl Chloride Anion Exchange Membrane as a Separator in the Alkaline Water Electrolysis, Membr. J., 23, 469-474 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.469
- T. Sata, T. Yamaguchi, and K. Matsusaki, Effect of hydrophobicity of ion exchange groups of anion exchange membranes on permselectivity between two anions, J. Phys. Chem. A, 99, 12875-12882 (1995). https://doi.org/10.1021/j100034a028
- J. R. Varcoe and R. C. T. Slade, Prospects for Alkaline Anion exchange Membranes in Low Temperature Fuel Cells, Fuel cells, 5, 187-200 (2005). https://doi.org/10.1002/fuce.200400045
- R. Patel, S. J. Im, Y. T. Ko, J. H. Kim, and B. R. Min, Preparation and characterization of proton conducting polysulfone grafted poly (styrene sulfonic acid) polyelectrolyte membranes, J. Ind. Eng. Chem., 15, 299-303 (2009). https://doi.org/10.1016/j.jiec.2008.12.011
- M. D. Guiver, G. P. Robertson, S. Rowe, S. Foley, Y. S. Kang, H. C. Park, J. Won, and H. N. L. Thi, Modified polysulfones. IV. Synthesis and characterization of polymers with silicon substituents for a comparative study of gas transport properties, J. Polym. Sci. Pol. Chem., 39, 2103-2124 (2001). https://doi.org/10.1002/pola.1187
- J. Yan and M. A. Hickner, Anion exchange membranes by bromination of benzylmethyl-containing poly (sulfone) s, Macromolecules, 43, 2349-2356 (2010). https://doi.org/10.1021/ma902430y
- Y. Zhao, J. Pan, H. Yu, D. Yang, J. Li, L. Zhuang, Z. Shao, and B. Yi, Quaternary ammonia polysulfone-PTFE composite alkaline anion exchange membrane for fuel cells application, Int. J. Hydrogen Energy., 38, 1983-1987 (2013). https://doi.org/10.1016/j.ijhydene.2012.11.055
- N. Li, Q. Zhang, C. Wang, Y. M. Lee, and M. D. Guiver, Phenyltrimethylammonium Functionalized Polysulfone Anion Exchange Membranes, Macromolecules, 45, 2411-2419 (2012). https://doi.org/10.1021/ma202681z
- G. Nie, X. Li, J. Tao, W. Wu, and S. Liao, Alkali resistant cross-linked poly (arylene ether sulfone) s membranes containing aromatic side-chain quaternary ammonium groups, J. Membr. Sci., 474, 187-195 (2015). https://doi.org/10.1016/j.memsci.2014.09.053
- X. Huang, X. Ou, D. Huang, F. Ding, and Z. Chen, Cross-Linked Polyether Ether Ketone-g-2-(dimethylamino) Ethyl Methacrylate for Anion Exchange Membrane with High Ion Exchange Capacities and OH- permeability, Adv. Sci. Lett., 5, 530-534 (2012). https://doi.org/10.1166/asl.2012.1988
- D. H. Lee, S. J. Kim, S. Y. Nam, and H. J. Kim, Synthesis and Ion Conducting Properties of Anion Exchange Membranes based on PBI Copolymers for Alkaline Fuel Cells, Membr. J., 20, 217-221 (2010).
- Y. S. Li, T. S. Zhao, and W. W. Yang, Measurements of water uptake and transport properties in anion-exchange membranes, Int. J. Hydrogen Energy., 35, 5656-5665 (2010). https://doi.org/10.1016/j.ijhydene.2010.03.026
- H. J. Lee, J. Choi, J. Y. Han, H. J. Kim, Y. E. Sung, H. Kim, D. Henkensmeier, E. A. Cho, J. H. Jang, and S. J. Yoo, Synthesis and characterization of poly (benzimidazolium) membranes for anion exchange membrane fuel cells, Polym. Bull., 70, 2619-2631 (2013). https://doi.org/10.1007/s00289-013-0978-0
- L. C. Jheng, S. L. C. Hsu, B. Y. Lin, and Y.-l. Hsu, Quaternized polybenzimidazoles with imidazolium cation moieties for anion exchange membrane fuel cells, J. Membr. Sci., 460, 160-170 (2014). https://doi.org/10.1016/j.memsci.2014.02.043
- D. Henkensmeier, H. Cho, M. Brela, A. Michalak, A. Dyck, W. Germer, N. M. H. Duong, J. H. Jang, H.-J. Kim, and N.-S. Woo, Anion conducting polymers based on ether linked polybenzimidazole (PBI-OO), Int. J. Hydrogen Energy., 39, 2842-2853 (2014). https://doi.org/10.1016/j.ijhydene.2013.07.091
- M. A. Khan, M. Kumar, and Z. A. Alothman, Preparation and characterization of organic-inorganic hybrid anion-exchange membranes for electrodialysis, J. Ind. Eng. Chem., 21 723-730 (2015). https://doi.org/10.1016/j.jiec.2014.04.002
- R. P. Pandey, A. K. Thakur, and V. K. Shahi, Stable and efficient composite anion-exchange membranes based on silica modified poly (ethyleneimine) poly (vinyl alcohol) for electrodialysis, J. Membr. Sci., 469, 478-487 (2014). https://doi.org/10.1016/j.memsci.2014.06.046
- T. Xu, Ion exchange membranes: state of their development and perspective, J. Membr. Sci., 263, 1-29 (2005). https://doi.org/10.1016/j.memsci.2005.05.002
- M. M. Nasef and E. S.A. Hegazy, Preparation and applications of ion exchange membranes by radiation-induced graft copolymerization of polar monomers onto non-polar films, Prog. Polym. Sci., 29, 499-561 (2004). https://doi.org/10.1016/j.progpolymsci.2004.01.003
- H. Strathmann, Electromembrane processes: Basic aspects and applications, Elsevier Science: Amsterdam, pp. 391-429.
- J. H. Choi, S. H. Kim, and S. H. Moon, Heterogeneity of ion-exchange membranes: the effects of membrane heterogeneity on transport properties, J. Colloid Interface Sci., 241, 120-126 (2001). https://doi.org/10.1006/jcis.2001.7710
- K. Kim, P. Heo, T. Ko, and J. C. Lee, Semi-interpenetrating network electrolyte membranes based on sulfonated poly (arylene ether sulfone) for fuel cells at high temperature and low humidity conditions, Electrochem. Commun., 48, 44-48 (2014). https://doi.org/10.1016/j.elecom.2014.08.012
- J. Wang, R. He, and Q. Che, Anion exchange membranes based on semi-interpenetrating polymer network of quaternized chitosan and polystyrene, J. Colloid Interface Sci., 361, 219-225 (2011). https://doi.org/10.1016/j.jcis.2011.05.039
- Y. H. Kwon, S. C. Kim, and S. Y. Lee, Nanoscale phase separation of sulfonated poly (arylene ether sulfone)/poly (ether sulfone) semi-IPNs for DMFC membrane applications, Macromolecules, 42, 5244-5250 (2009). https://doi.org/10.1021/ma900781c
- B. Auclair, V. Nikonenko, C. Larchet, M. Metayer, and L. Dammak, Correlation between transport parameters of ion-exchange membranes, J. Membr. Sci., 195, 89-102 (2002). https://doi.org/10.1016/S0376-7388(01)00556-7
- D. J. Kim, M. J. Jo, and S. Y. Nam, A review of polymer nanocomposite electrolyte membranes for fuel cell application, J. Ind. Eng. Chem., 21, 36-52 (2015). https://doi.org/10.1016/j.jiec.2014.04.030
- J. W. Bae, Y. H. Cho, Y. E. Sung, K. Shin, and J. Y. Jho, Performance enhancement of polymer electrolyte membrane fuel cell by employing line-patterned Nafion membrane, J. Ind. Eng. Chem., 18, 876-879 (2012). https://doi.org/10.1016/j.jiec.2012.01.019
- D. G. Kang, B. K. Hur, D. W. Lee, and K. H. Seo. Aging Property Studies on Rubber Gasket for Polymer Electrolyte Membrane Fuel Cell Stack, Appl. Chem. Eng., 22, 149-154 (2011).
- S. Kim and I. Hong, Membrane performance comparison in a proton exchange membrane fuel cell (PEMFC) stack, J. Ind. Eng. Chem., 16, 901-905 (2010). https://doi.org/10.1016/j.jiec.2010.05.017
- H. B. Park and Y. M. Lee, Polymer Electrolyte Membranes for Fuel Cell, Appl. Chem. Eng., 13, 1-11 (2002).
- S. U. Kim, D. M. Yu, T. H. Kim, Y. T. Hong, S. Y. Nam, and J. H. Choi, Effect of sulfonated poly (arylene ether sulfone) binder on the performance of polymer electrolyte membrane fuel cells, J. Ind. Eng. Chem., In press (2014).
- D. J. Kim, H. Y. Hwang, S. B. Jung, and S. Y. Nam, Sulfonated poly (arylene ether sulfone)/Laponite-SO3H composite membrane for direct methanol fuel cell, J. Ind. Eng. Chem., 18, 556-562 (2012). https://doi.org/10.1016/j.jiec.2011.11.128
- D. J. Kim and S. Y. Nam, Characterization of Sulfonated Silica Nanocomposite Electrolyte Membranes for Fuel Cell, J. Nanosci. Nanotechnol., 14, 8961-8963 (2014). https://doi.org/10.1166/jnn.2014.10073
- D. J. Kim, H. Y. Hwang, and S. Y. Nam, Characterization of sulfonated poly (arylene ether sulfone)(SPAES)/silica-phosphate sol-gel composite membrane: Effects of the sol-gel composition, Macromol. Res., 21, 1194-1200 (2013). https://doi.org/10.1007/s13233-013-1162-y
- D. J. Kim, H. J. Lee, and S. Y. Nam, Sulfonated poly (arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell applications, Int. J. Hydrogen Energy., 39, 17524-17532 (2014). https://doi.org/10.1016/j.ijhydene.2013.09.030
- H. S. Choi, J. C. Kim, S. H. Ryu, and G. J. Hwang, Research Review of the All Vanadium Redox-flow Battery for Large Scale Power Storage, Membrane Journal, 21, 107-117 (2011).
- E. Sum and M. Skyllas-Kazacos, A study of the V (II)/V (III) redox couple for redox flow cell applications, J. Power Sources, 15, 179-190 (1985). https://doi.org/10.1016/0378-7753(85)80071-9
- D. J. Kim and S. Y. Nam, Research Trend of Polymeric Ion Exchange Membrane for Vanadium Redox Flow Battery, Membr. J., 22, 285-300 (2012).
- H. Huh, D. J. Kim, and S. Y. Nam, Proton conductivity and Methanol Permeabiliry of sulfonated poly(aryl ether sulfone)/Modified Graphene Hybrid Membranes, Membr. J., 21, 247-255 (2011).
- S. G. Park, N. S. Kwak, C. W. Hwang, H. M. Park, and T. S. Hwang, Synthesis and characteristics of aminated vinylbenzyl chloride-co-styrene-co-hydroxyethyl acrylate anion-exchange membrane for redox flow battery applications, J. Membr. Sci., 423, 429-437 (2012).
- S. Zhang, C. Yin, D. Xing, D. Yang, and X. Jian, Preparation of chloromethylated/quaternized poly (phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications, J. Membr. Sci., 363, 243-249 (2010). https://doi.org/10.1016/j.memsci.2010.07.046
- C. G. Morandi, R. Peach, H. M. Krieg, and J. Kerres, Novel Imidazolium-Functionalized Anion-Exchange Polymer PBI Blend Membranes, J. Membr. Sci., 476, 256-263 (2015). https://doi.org/10.1016/j.memsci.2014.11.049
- S. Wu, K. Zhang, X. Wang, Y. Jia, B. Sun, T. Luo, F. Meng, Z. Jin, D. Lin, and W. Shen, Enhanced adsorption of cadmium ions by 3D sulfonated reduced graphene oxide, Chem. Eng. J., 262, 1292-1302 (2015). https://doi.org/10.1016/j.cej.2014.10.092
- M. Wang, X. Liu, Y. X. Jia, and X. L. Wang, The Improvement of Comprehensive Transport Properties to Heterogeneous Cation Exchange Membrane by the Covalent Immobilization of Polyethyleneimine, Sep. Purif. Technol., 140, 69-76 (2015). https://doi.org/10.1016/j.seppur.2014.11.016
- H. Farrokhzad, T. Kikhavani, F. Monnaie, S. N. Ashrafizadeh, G. Koeckelberghs, T. Van Gerven, and B. Van der Bruggen, Novel composite cation exchange films based on sulfonated PVDF for electromembrane separations, J. Membr. Sci., 474, 167-174 (2015). https://doi.org/10.1016/j.memsci.2014.10.002
- J. G. Hong and Y. Chen, Evaluation of electrochemical properties and reverse electrodialysis performance for porous cation exchange membranes with sulfate-functionalized iron oxide, J. Membr. Sci., 473, 210-217 (2015). https://doi.org/10.1016/j.memsci.2014.09.012
- H. Deng, Z. Wang, W. Zhang, B. Hu, and S. Zhang, Preparation and monovalent selective properties of multilayer polyelectrolyte modified cation exchange membranes, J. Appl. Polym. Sci., 132, 41488 (2015).
- J. Ma, Z. Wang, D. Suor, S. Liu, J. Li, and Z. Wu, Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators, J. Power Sources, 272, 24-33 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.053
- J. Liu, G. M. Geise, X. Luo, H. Hou, F. Zhang, Y. Feng, M. A. Hickner, and B. E. Logan, Patterned ion exchange membranes for improved power production in microbial reverse-electrodialysis cells, J. Power Sources, 271, 437-443 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.026
- A. N. Filippov, E. Y. Safronova, and A. B. Yaroslavtsev, Theoretical and experimental investigation of diffusion permeability of hybrid MF-4SC membranes with silica nanoparticles, J. Membr. Sci., 471, 110-117 (2014). https://doi.org/10.1016/j.memsci.2014.08.008
- J. Pan, L. Ge, X. Lin, L. Wu, B. Wu, and T. Xu, Cation exchange membranes from hot-pressed electrospun sulfonated poly (phenylene oxide) nanofibers for alkali recovery, J. Membr. Sci., 470, 479-485 (2014). https://doi.org/10.1016/j.memsci.2014.07.061
- R. Valek and J. Zachovalova, Cation-exchange membrane modified by inorganic short fibres, Desalin. Water Treat., 1, 1-5 (2014).
- L. Brozova, J. Krivcik, D. Nedela, V. Kysela, and J. zitka, The influence of activation of heterogeneous ion-exchange membranes on their electrochemical properties, Desalin. Water Treat., 1-5 (2014).
- H. Yan, S. Xue, C. Wu, Y. Wu, and T. Xu, Separation of NaOH and NaAl(OH)4 in alumina alkaline solution through diffusion dialysis and electrodialysis, J. Membr. Sci., 469, 436-446 (2014). https://doi.org/10.1016/j.memsci.2014.07.002
- B. Porras, V. Romero, and J. Benavente, Effect of acid/basic solutions contact on ion transport numbers and conductivity for an anion-exchange membrane, Desalin. Water Treat., 1-5 (2014).
- S. M. Hosseini, S. Rafiei, A. R. Hamidi, A. R. Moghadassi, and S. S. Madaeni, Preparation and electrochemical characterization of mixed matrix heterogeneous cation exchange membranes filled with zeolite nanoparticles: Ionic transport property in desalination, Desalination, 351, 138-144 (2014). https://doi.org/10.1016/j.desal.2014.07.036
- K. J. Chae, K. Y. Kim, M. J. Choi, E. Yang, I. S. Kim, X. Ren, and M. Lee, Sulfonated polyether ether ketone (SPEEK)-based composite proton exchange membrane reinforced with nanofibers for microbial electrolysis cells, Chem. Eng. J., 254, 393-398 (2014). https://doi.org/10.1016/j.cej.2014.05.145
- L. Yang, B. Tang, and P. Wu, A novel proton exchange membrane prepared from imidazole metal complex and Nafion for low Humidity, J. Membr. Sci., 467, 236-243 (2014). https://doi.org/10.1016/j.memsci.2014.05.033
- Z. Sun, X. Wei, H. Zhang, and X. Hu, Dechlorination of pentachlorophenol (PCP) in aqueous solution on novel Pd-loaded electrode modified with PPy-DBS composite film, Environ. Sci.Pollut. R., DOI 10.1007/s11356-014-3641-x (2014).
- M. Arsalan, Binding nature of polystyrene and PVC 50: 50% with CP and NP 50: 50% ion exchangeable, mechanically and thermally stable membrane, J. Ind. Eng. Chem., 20, 3283-3291 (2014). https://doi.org/10.1016/j.jiec.2013.11.068
- H. Farrokhzad, T. Van Gerven, and B. Van der Bruggen, Selective composite cation-exchange membrane based on S-PVDF, Desalin. Water Treat., 1-7 (2014).
- A. R. Moghadassi, P. Koranian, S. M. Hosseini, M. Askari, and S. S. Madaeni, Surface modification of heterogeneous cation exchange membrane through simultaneous using polymerization of PAA and multi walled carbon nano tubes, J. Ind. Eng. Chem., 20, 2710-2718 (2013).
- X. A. Walter, J. Greenman, and I. A. Ieropoulos, Intermittent load implementation in microbial fuel cells improves power performance, Bioresource Technol., 172, 365-372 (2014). https://doi.org/10.1016/j.biortech.2014.09.034
- R. Ghalloussi, L. Chaabane, L. Dammak, and D. Grande, Ageing of ion-exchange membranes used in an electrodialysis for food industry: SEM, EDX, and limiting current investigations, Desalin. Water Treat., 10.1080/19443994.2014.968908, 1-6 (2014).
- R. Zerdoumi, K. Oulmi, and S. Benslimane, Enhancement of counter- ion transport through ion-exchange membranes in electrodialytic processes, Desalin. Water Treat., 10.1080/19443994.2014.972734, 1-6 (2014).
- M. Cherif, I. Mkacher, R. Ghalloussi, L. Chaabane, A. Ben Salah, K. Walha, L. Dammak, and D. Grande, Experimental investigation of neutralization dialysis in three-compartment membrane stack, Desalin. Water Treat., 10.1080/19443994.2014.968903, 1-9 (2014).
- J. Krivcik, D. Nedela, J. Hadrava, and L. Brozova, Increasing selectivity of a heterogeneous ion-exchange membrane, Desalin. Water Treat., 10.1080/19443994.2014.980970, 1-7 (2014).
- M. Ghahraman Afshar, G. A. Crespo, and E. Bakker, Counter electrode based on an ion-exchanger Donnan exclusion membrane for bioelectroanalysis, Biosens. Bioelectron., 61, 64-69 (2014). https://doi.org/10.1016/j.bios.2014.04.039
- S. Pandit, S. Khilari, K. Bera, D. Pradhan, and D. Das, Application of PVA-DDA polymer electrolyte composite anion exchange membrane separator for improved bioelectricity production in a single chambered microbial fuel cell, Chem. Eng. J., 257, 138-147 (2014). https://doi.org/10.1016/j.cej.2014.06.077
- F. T. Wandschneider, D. Finke, S. Grosjean, P. Fischer, K. Pinkwart, J. Tubke, and H. Nirschl, Model of a vanadium redox flow battery with an anion exchange membrane and a Larminie-correction, J. Power Sources, 272, 436-447 (2014). https://doi.org/10.1016/j.jpowsour.2014.08.082
- U. Chatterjee, V. Bhadja, and S. K. Jewrajka, Effect of phase separation and adsorbed water on power consumption and current efficiency of terpolymer conetwork-based anion exchange membrane, J. Mater. Chem. A, 2, 16124-16134 (2014). https://doi.org/10.1039/C4TA03474K
- M. Zarrinkhameh, A. Zendehnam, and S. M. Hosseini, Electrochemical, morphological and antibacterial characterization of PVC based cation exchange membrane modified by zinc oxide nanoparticles, J. Polymer Res., 20, 1-9 (2013).
- K. M. Lee, J. Y. Woo, B. C. Jee, Y. K. Hwang, C. H. Yun, S. B. Moon, J. H. Chung, and A. S. Kang, Effect of cross-linking agent and heteropolyacid (HPA) contents on physicochemical characteristics of covalently cross-linked sulfonated poly (ether ether ketone)/HPAs composite membranes for water electrolysis, J. Ind. Eng. Chem., 17, 657-666 (2011). https://doi.org/10.1016/j.jiec.2011.02.017
Cited by
- Review—Multifunctional Materials for Enhanced Li-Ion Batteries Durability: A Brief Review of Practical Options vol.164, pp.1, 2017, https://doi.org/10.1149/2.0451701jes
- Vinyl Benzyl Chloride로 제조된 음이온 교환막의 구조적 고찰 및 전기화학적 특성 vol.25, pp.4, 2015, https://doi.org/10.14579/membrane_journal.2015.25.4.310
- 실란계 복합화 무기물을 이용한 SPAES 복합막의 특성평가 vol.25, pp.5, 2015, https://doi.org/10.14579/membrane_journal.2015.25.5.456
- 폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가 vol.27, pp.1, 2015, https://doi.org/10.14579/membrane_journal.2017.27.1.92
- 특허 및 논문 게재 분석을 통한 수처리용 분리막의 연구동향 vol.28, pp.4, 2017, https://doi.org/10.14478/ace.2017.1059
- Preparation of Nano-SiO 2 /Al 2 O 3 /ZnO-Blended PVDF Cation-Exchange Membranes with Improved Membrane Permselectivity and Oxidation Stability vol.11, pp.12, 2015, https://doi.org/10.3390/ma11122465