DOI QR코드

DOI QR Code

Transmembrane Pressure of Flat-sheet Membrane in Emulsion Type Cutting Oil Solution for Symmetric/Asymmetric Sinusoidal Flux Continuous Operation Mode

대칭/비대칭 사인파형 연속운전 방식에 따른 에멀젼형 절삭유 수용액 내 평막의 막간 차압

  • Won, In Hye (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Lee, Hyeon Woo (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Gwak, Hyeong Jun (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Chung, Kun Yong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology)
  • 원인혜 (서울과학기술대학교 화공생명공학과) ;
  • 이현우 (서울과학기술대학교 화공생명공학과) ;
  • 곽형준 (서울과학기술대학교 화공생명공학과) ;
  • 정건용 (서울과학기술대학교 화공생명공학과)
  • Received : 2015.07.31
  • Accepted : 2015.08.21
  • Published : 2015.08.31

Abstract

In this study, permeation experiments were carried out using the symmetric and asymmetric sinusoidal flux continuous operation (SFCO) modes for the submerged flat sheet membrane in the 0.5 wt% emulsion type cutting oil solution. The effective area and nominal pore size of the used microfiltration membrane were $0.02m^2$ and $0.15{\mu}m$, respectively. The emulsion cutting oil was rejected over 99% based on turbidity. Transmembrane pressure increased lower as the aeration rates increased. The symmetric SFCO mode was a little more effective than the symmetric SFCO mode in low permeate flux between 10 and $15L/m^2{\cdot}h$. However, the symmetric SFCO mode was shown very effectively in high permeate flux between 25 and $30L/m^2{\cdot}h$.

본 연구에서는 0.5 wt% 에멀젼형 절삭유 수용액에 평막형 분리막을 침지시키고 대칭 및 비대칭 사인파형 투과유속 연속운전(SFCO) 방식으로 실험하였다. 사용한 정밀여과막은 유효 막면적이 $0.02m^2$이고 공칭 세공크기가 $0.15{\mu}m$이었다. 탁도 기준으로 에멀젼형 절삭유의 99% 이상이 제거되었으며 산기량이 증가할수록 TMP가 낮게 상승하였다. 비대칭형 SFCO 운전방식은 투과유속이 낮은 $10{\sim}15L/m^2{\cdot}h$ 영역에서 대칭형 SFCO 운전방식보다 다소 유리하였다. 하지만, 투과유속이 높은 $25{\sim}30L/m^2{\cdot}h$에서는 대칭형 SFCO 운전이 매우 효과적임을 확인할 수 있었다.

Keywords

References

  1. Y. W. Kim, K. M. Hong, K. W. Chung, and C. J. Park, "The study on decomposition of metal-working fluids against microbes", Korean Chem. Eng. Res., 44, 350 (2006).
  2. K. Y. Chung, J. J. Kim, K. J. Kim, and A. G. Fane, "Microfiltration characteristics for emulsified oil in water", Membr. J., 8, 203 (1998).
  3. S. M. Yoon, K. Park, J. Y. Kim, H. J. Han, T. I. Kim, K. S. Kang, W. Bae, and Y. W. Rhee, "Technology trend of oil treatment for produced water by the patent analysis", Korean Chem. Eng. Res., 49, 681 (2011). https://doi.org/10.9713/kcer.2011.49.6.681
  4. K. H. Lee, "Advanced treatment for reuse of oil refinery process wastewater using UF/RO processes", Membr. J., 10, 220 (2000).
  5. J. W. Kim and S. H. Noh, "Study of two-shaft rotary disc UF module for the separation of oil emulsion", Membr. J., 6, 220 (1996).
  6. C. Visvanathan and R. B. Aim, "Application of an electric field for the reduction of particle and colloidal membrane fouling in crossflow microfiltration", Sep. Sci. Tech., 24, 383 (1989). https://doi.org/10.1080/01496398908049776
  7. T. M. Patel and K. Nath, "Modeling of permeate flux and mass transfer resistances in the reclamation of molasses wastewater by a novel gas-sparged nanofiltration", Korean J. Chem. Eng., 31, 1865 (2014). https://doi.org/10.1007/s11814-014-0139-7
  8. L. J. Zeman and A. L. Zydney, "Microfiltration and ultrafiltration: Principles and applications", marcel dekker Inc., New York (1996).
  9. A. Maartens, P. Swart, and P. Jacobs, "Membrane pretreatment: A method for reducing fouling by natural organic matter", J. Colloid Interface Sci., 221, 137 (2000). https://doi.org/10.1006/jcis.1999.6569
  10. P. Srijaroonrat, E. Julien, and Y. Aurelle, "Unstable secondary oil/water emulsion treatment using ultrafiltration: Fouling control by backflushing", J. Membr. Sci., 159, 11 (1999). https://doi.org/10.1016/S0376-7388(99)00044-7
  11. D. E. Hadzismajlovic and C. D. Bertram, "Flux enhancement in turbulent crossflow microfiltration of yeast using a collapsible-tube pulsation generator", J. Membr. Sci., 163, 123 (1999). https://doi.org/10.1016/S0376-7388(99)00161-1
  12. X. Li, J. Li, J. Wang, H. Wang, C. Cui, B. He, and H. Zhang, "Direct monitoring of sub-critical flux fouling in a horizontal double-end submerged hollow fiber membrane module using ultrasonic time domain reflectometry", J. Membr. Sci., 451, 226 (2014). https://doi.org/10.1016/j.memsci.2013.09.060
  13. W. K. Choi, J. W. Lee, and K. W. Lee, "Characteristics of crossflow electro-microfiltration process for treatment of oily waste water", Membr. J., 12, 216 (2002).
  14. M. Belkacem, D. Hadjiev, and Y. Aurelle, "A model for calculating the steady state flux of organic ultrafiltration membranes for the case of cutting oil emulsions", Chem. Eng. J., 56, 27 (1995).
  15. H. M. Huotari, I. H. Huisman, and G. Tragardh, "Electrically enhanced crossflow membrane filtration of oily waste water using the membrane as a cathode", J. Membr. Sci., 156, 49 (1999). https://doi.org/10.1016/S0376-7388(98)00325-1
  16. I. H. Won and K. Y. Chung, "Characteristics of the sinusoidal flux continuous operation mode for the submerged flat-sheet membrane module in cutting oil solutions", J. Ind. Eng. Chem., in press (2015).