References
- C. Zhu, S. Guo, Y. Zhai, and S. Dong, "Layerby- layer self-assembly for constructing a graphene/ platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker", Langmuir, 26, 7614 (2010). https://doi.org/10.1021/la904201j
- D. Li, Y. Cui, K. Wang, Q. He, X. Yan, and J. Li, "Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers", Adv. Funct. Mater., 17, 3134 (2007). https://doi.org/10.1002/adfm.200700427
- C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, "Freely suspended nanocomposite membranes as highly sensitive sensors", Nat. Mater., 3, 721 (2004). https://doi.org/10.1038/nmat1212
- B.-S. Kim, J.-M. Qiu, J.-P. Wang, and T. A. Taton, "Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers", Nano Lett., 5, 1987 (2005). https://doi.org/10.1021/nl0513939
- Y. Ding, M. Chen, and J. Erlebacher, "Metallic mesoporous nanocomposites for electrocatalysis", J. Am. Chem. Soc., 126, 6876 (2004). https://doi.org/10.1021/ja0320119
- J. Geng, K. Li, K. Y. Pu, D. Ding, and B. Liu, "Conjugated polymer and gold nanoparticle co loaded plga nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging", Small, 8, 2421 (2012). https://doi.org/10.1002/smll.201102353
- V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, "Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer", Nano Lett., 7, 3065 (2007). https://doi.org/10.1021/nl071546n
- I. I. Slowing, B. G. Trewyn, S. Giri, and V. Y. Lin, "Mesoporous silica nanoparticles for drug delivery and biosensing applications", Adv. Funct. Mater., 17, 1225 (2007). https://doi.org/10.1002/adfm.200601191
- W. J. Rieter, K. M. Pott, K. M. Taylor, and W. Lin, "Nanoscale coordination polymers for platinum- based anticancer drug delivery", J. Am. Chem. Soc., 130, 11584 (2008). https://doi.org/10.1021/ja803383k
- B. G. Trewyn, S. Giri, I. I. Slowing, and V. S.-Y. Lin, "Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems", Chem. Commun., 3236 (2007).
- M. Delcea, H. Mohwald, and A. G. Skirtach, "Stimuli-responsive LbL capsules and nanoshells for drug delivery", Adv. Drug Delivery Rev., 63, 730 (2011). https://doi.org/10.1016/j.addr.2011.03.010
- D. Astruc, E. Boisselier, and C. Ornelas, "Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine", Chem. Rev., 110, 1857 (2010). https://doi.org/10.1021/cr900327d
- R. Singh and N. Zheludev, "Materials: Superconductor photonics", Nat. Photonics, 8, 679 (2014). https://doi.org/10.1038/nphoton.2014.206
-
Y. Teow, A. Ahmad, J. Lim, and B. Ooi, "Preparation and characterization of PVDF/
$TiO_2$ mixed matrix membrane via in situ colloidal precipitation method", Desalination, 295, 61 (2012). https://doi.org/10.1016/j.desal.2012.03.019 - S. Jessie Lue, J. Y. Chen, and J. Ming Yang, "Crystallinity and stability of poly (vinyl alcohol)- fumed silica mixed matrix membranes", J. Macromol. Sci. Part B Phys., 47, 39 (2007). https://doi.org/10.1080/15568310701744133
- L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, "Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review", Desalination, 308, 15 (2013). https://doi.org/10.1016/j.desal.2010.11.033
- T. B. Kang and S. R. Hong, "Separation of Hydrogen-Nitrogen Gases by PDMS-NaA zeolite Mixed Matrix Membranes", Membr. J., 25, 295 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.295
- J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, and M. D. Guiver, "Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)", J. Membr. Sci., 346, 280 (2010). https://doi.org/10.1016/j.memsci.2009.09.047
- C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
- Y. I. Park. H. R. Song, S. E. Nam, Y. K. Hwang, J. S. Chang, and U. H. Lee, "Preparation and characterization of mixed-matrix membranes containing MIL-100(Fe) for gas separation", Membr. J., 23, 432 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.432
- S. W. Kang, K. Char, and Y. S. Kang, "Novel application of partially positively charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes", Chem. Mater., 20, 1308 (2008). https://doi.org/10.1021/cm071516l
- Y. S. Kang, S. W. Kang, H. Kim, J. H. Kim, J. Won, C. K. Kim, and K. Char, "Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-benzoquinone and its implications for facilitated olefin transport", Adv. Mater., 19, 475 (2007). https://doi.org/10.1002/adma.200601009
- I. S. Chae, S. W. Kang, J. Y. Park, Y. G. Lee, J. H. Lee, J. Won, and Y. S. Kang, "Surface Energy-level tuning of silver nanoparticles for facilitated olefin transport", Angew. Chem. Int. Ed., 123, 3038 (2011). https://doi.org/10.1002/ange.201007557
-
M. Zhou, D. Korelskiy, P. Ye, M. Grahn, and J. Hedlund, "A uniformly oriented MFI membrane for improved
$CO_2$ separation", Angew. Chem. Int. Ed., 53, 3492 (2014). https://doi.org/10.1002/anie.201311324 -
E. H. Cho, K. B. Kim, and J. W. Rhim, "Transport properties of PEBAX blended membranes with peg and glutaraldehyde for
$SO_2$ and other gases", Polymer(KOREA), 38, 687 (2014). - D.-H. Kim, H.-S. Im, M.-S. Kim, B.-S. Lee, B.-S. Lee, S.-W. Yoon, B.-S. Kim, Y.-I. Park, S.-I. Cheong, and J.-W. Rhim, "Study on the gas permeation behaviors of surface fluorinated polysulfone membranes", Polymer(KOREA), 33, 537 (2009).
- L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
-
T. Zhou, L. Luo, S. Hu, S. Wang, R. Zhang, H. Wu, Z. Jiang, B. Wang, and J. Yang, "Janus composite nanoparticle-incorporated mixed matrix membranes for
$CO_2$ separation", J. Membr. Sci., 489, 1 (2015). https://doi.org/10.1016/j.memsci.2015.03.070 -
J. W. Rhim, C. S. Lee, E. H. Cho, S. Y. Ha, and J. T. Chung, "Multi-stage Process study of pei-pdms hollow fiber composite membrane modules for
$H_2$ /$CO_2$ mixed gas separation", Membr. J., 23, 1 (2013). -
Y. Kong, H. Du, J. Yang, D. Shi, Y. Wang, Y. Zhang, and W. Xin, "Study on polyimide/
$TiO_2$ nanocomposite membranes for gas separation", Desalination, 146, 49 (2002). https://doi.org/10.1016/S0011-9164(02)00476-9 -
S. Matteucci, V. A. Kusuma, D. Sanders, S. Swinnea, and B. D. Freeman, "Gas transport in
$TiO_2$ nanoparticle-filled poly(1-trimethylsilyl-1-propyne)", J. Membr. Sci., 307, 196 (2008). https://doi.org/10.1016/j.memsci.2007.09.035 -
F. Moghadam, M. R. Omidkhah, E. Vasheghani- Farahani, M. Z. Pedram, and F. Dorosti, "The effect of
$TiO_2$ nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes", Sep. Purif. Technol., 77, 128 (2011). https://doi.org/10.1016/j.seppur.2010.11.032 - T. Yang and T. S. Chung, "High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor", Int. J. Hydrogen Energy, 38, 229 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.045
-
H. Y. Zhao, Z. Jin, H. M. Su, J. L. Zhang, X. D. Yao, H. J. Zhao, and G. S. Zhu, "Target synthesis of a novel porous aromatic framework and its highly selective separation of
$CO_2/CH_4$ ", Chem. Commun., 49, 2780 (2013). https://doi.org/10.1039/c3cc38474h - T.-S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
- P. Burmann, B. Zornoza, C. Tellez, and J. Coronas, "Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via spin coating for gas separation", Chem. Eng. Sci., 107, 66 (2014). https://doi.org/10.1016/j.ces.2013.12.001
-
D. K. Roh, S. J. Kim, W. S. Chi, J. K. Kim, and J. H. Kim, "Dual-functionalized mesoporous
$TiO_2$ hollow nanospheres for improved$CO_2$ separation membranes", Chem. Commun., 50, 5717 (2014). https://doi.org/10.1039/c4cc00513a -
S. H. Ahn, D. J. Kim, W. S. Chi, and J. H. Kim, "Hierarchical double-shell nanostructures of
$TiO_2$ nanosheets on$SnO_2$ hollow spheres for high-efficiency, solid-state, dye-sensitized solar cells", Adv. Func. Mater., 24, 5037 (2014). https://doi.org/10.1002/adfm.201400774 -
S. H. Ahn, D. J. Kim, W. S. Chi, and J. H. Kim, "One-dimensional hierarchical nanostructures of
$TiO_2$ nanosheets on$SnO_2$ nanotubes for high efficiency solid-state dye-sensitized solar cells", Adv. Mater., 25, 4893 (2013). https://doi.org/10.1002/adma.201302226 - W. S. Chi, S. J. Kim, S. J. Lee, Y. S. Bae, and J. H. Kim, "Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach", Chem. Sus. Chem., 8, 650 (2015). https://doi.org/10.1002/cssc.201402677
- G. H. Hong, D. Song, I. S. Chae, J. H. Oh, and S. W. Kang, "Highly permeable poly (ethylene oxide) with silver nanoparticles for facilitated olefin transport", RSC Adv., 4, 4905 (2014). https://doi.org/10.1039/c3ra46506c
-
T. Hirakawa and P. V. Kamat, "Charge separation and catalytic activity of Ag@
$TiO_2$ core-shell composite clusters under UV-irradiation", J. Am. Chem. Soc., 127, 3928 (2005). https://doi.org/10.1021/ja042925a -
I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, and L. M. Liz-Marzan, "One-pot synthesis of Ag@
$TiO_2$ core-shell nanoparticles and their layer-by-layer assembly", Langmuir, 16, 2731 (2000). https://doi.org/10.1021/la991212g