DOI QR코드

DOI QR Code

Effect of Mesoporous TiO2 in Facilitated Olefin Transport Membranes Containing Ag Nanoparticles

나노입자가 포함된 촉진수송 분리막에서의 메조기공 티타늄산화물의 영향

  • Kim, Sang Jin (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jung, Jung Pyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Dong Jun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김상진 (연세대학교 화공생명공학과) ;
  • 정정표 (연세대학교 화공생명공학과) ;
  • 김동준 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2015.10.07
  • Accepted : 2015.10.21
  • Published : 2015.10.31

Abstract

Facilitated transport is considered to be a possible solution to simultaneously improve permeability and selectivity, which is challenging in normal polymeric membranes based on solution-diffusion transport only. We investigated the effect of adding mesoporous $TiO_2$ ($m-TiO_2$) upon the separation performance of facilitated olefin transport membranes comprising poly(vinyl pyrrolidone), Ag nanoparticles, and 7,7,8,8-tetracyanoquinodimethane as the polymer matrix, olefin carrier, and electron acceptor, respectively. In particular, $m-TiO_2$ was prepared by means of a facile, mass-producible method using poly(vinyl chloride)-g-poly(oxyethylene methacrylate) graft copolymer as the template. The crystal phase of $m-TiO_2$ consisted of an anatase/rutile mixture, of crystallite size approximately 16 nm as determined by X-ray diffraction. The introduction of $m-TiO_2$ increased the membrane diffusivity, thereby increasing the mixed-gas permeance from 1.6 to 16.0 GPU ($1GPU=10^{-6}cm^3$(STP)/($s{\times}cm^2{\times}cmHg$), and slightly decreased the propylene/propane selectivity from 45 to 37. However, both the mixed-gas permeance and selectivity of the membrane containing $m-TiO_2$ rapidly decreased over time, whereas the membrane without $m-TiO_2$ had more stable long-term performance. This difference might be attributed to specific chemical interactions between $TiO_2$ and Ag nanoparticles, causing Ag to lose activity as an olefin carrier.

용액-확산 메커니즘에 의해 결정되는 기존의 고분자에서와는 달리, 촉진수송은 투과도와 선택도를 동시에 향상시킬 수 있는 기술이다. 본 연구에서는 은 나노입자, 폴리비닐피롤리돈, 7,7,8,8-테트라시야노퀴노디메탄으로 구성된 촉진수송 올레핀 분리막에 있어서, 메조기공 티타늄산화물($m-TiO_2$)에 대한 영향을 연구하였다. 특히 메조기공 티타늄산화물은 폴리비닐클로라이드-g-폴리옥시에틸렌 메타크릴레이트 가지형 공중합체를 템플레이트로 하여 쉽고 대량 생산이 가능한 방법으로 제조하였다. 엑스레이 회절분석에 따르면, 제조된 메조기공 티타늄산화물은 아나타제와 루타일 상의 혼합으로 구성되어 있으며, 결정의 크기가 약 16 nm 정도 되었다. 메조기공 티타늄산화물을 첨가하였을 때, 분리막의 확산도가 증가하여 혼합기체 투과도가 1.6에서 16 GPU로 증가하였고 선택도는 45에서 37로 약간 감소하였다. 메조기공 티타늄산화물이 첨가되지 않은 분리막은 장시간 성능이 유지되었으나, 메조기공 티타늄산화물이 첨가된 분리막의 경우 시간이 지남에 따라 투과도와 선택도가 감소하였다. 이는 티타늄산화물과 은 사이의 화학적 상호작용으로 은 나노입자의 올레핀 운반체로써의 활성을 감소시키기 때문으로 사료된다.

Keywords

References

  1. C. Zhu, S. Guo, Y. Zhai, and S. Dong, "Layerby- layer self-assembly for constructing a graphene/ platinum nanoparticle three-dimensional hybrid nanostructure using ionic liquid as a linker", Langmuir, 26, 7614 (2010). https://doi.org/10.1021/la904201j
  2. D. Li, Y. Cui, K. Wang, Q. He, X. Yan, and J. Li, "Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers", Adv. Funct. Mater., 17, 3134 (2007). https://doi.org/10.1002/adfm.200700427
  3. C. Jiang, S. Markutsya, Y. Pikus, and V. V. Tsukruk, "Freely suspended nanocomposite membranes as highly sensitive sensors", Nat. Mater., 3, 721 (2004). https://doi.org/10.1038/nmat1212
  4. B.-S. Kim, J.-M. Qiu, J.-P. Wang, and T. A. Taton, "Magnetomicelles: composite nanostructures from magnetic nanoparticles and cross-linked amphiphilic block copolymers", Nano Lett., 5, 1987 (2005). https://doi.org/10.1021/nl0513939
  5. Y. Ding, M. Chen, and J. Erlebacher, "Metallic mesoporous nanocomposites for electrocatalysis", J. Am. Chem. Soc., 126, 6876 (2004). https://doi.org/10.1021/ja0320119
  6. J. Geng, K. Li, K. Y. Pu, D. Ding, and B. Liu, "Conjugated polymer and gold nanoparticle co loaded plga nanocomposites with eccentric internal nanostructure for dual-modal targeted cellular imaging", Small, 8, 2421 (2012). https://doi.org/10.1002/smll.201102353
  7. V. Bagalkot, L. Zhang, E. Levy-Nissenbaum, S. Jon, P. W. Kantoff, R. Langer, and O. C. Farokhzad, "Quantum dot-aptamer conjugates for synchronous cancer imaging, therapy, and sensing of drug delivery based on bi-fluorescence resonance energy transfer", Nano Lett., 7, 3065 (2007). https://doi.org/10.1021/nl071546n
  8. I. I. Slowing, B. G. Trewyn, S. Giri, and V. Y. Lin, "Mesoporous silica nanoparticles for drug delivery and biosensing applications", Adv. Funct. Mater., 17, 1225 (2007). https://doi.org/10.1002/adfm.200601191
  9. W. J. Rieter, K. M. Pott, K. M. Taylor, and W. Lin, "Nanoscale coordination polymers for platinum- based anticancer drug delivery", J. Am. Chem. Soc., 130, 11584 (2008). https://doi.org/10.1021/ja803383k
  10. B. G. Trewyn, S. Giri, I. I. Slowing, and V. S.-Y. Lin, "Mesoporous silica nanoparticle based controlled release, drug delivery, and biosensor systems", Chem. Commun., 3236 (2007).
  11. M. Delcea, H. Mohwald, and A. G. Skirtach, "Stimuli-responsive LbL capsules and nanoshells for drug delivery", Adv. Drug Delivery Rev., 63, 730 (2011). https://doi.org/10.1016/j.addr.2011.03.010
  12. D. Astruc, E. Boisselier, and C. Ornelas, "Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine", Chem. Rev., 110, 1857 (2010). https://doi.org/10.1021/cr900327d
  13. R. Singh and N. Zheludev, "Materials: Superconductor photonics", Nat. Photonics, 8, 679 (2014). https://doi.org/10.1038/nphoton.2014.206
  14. Y. Teow, A. Ahmad, J. Lim, and B. Ooi, "Preparation and characterization of PVDF/$TiO_2$ mixed matrix membrane via in situ colloidal precipitation method", Desalination, 295, 61 (2012). https://doi.org/10.1016/j.desal.2012.03.019
  15. S. Jessie Lue, J. Y. Chen, and J. Ming Yang, "Crystallinity and stability of poly (vinyl alcohol)- fumed silica mixed matrix membranes", J. Macromol. Sci. Part B Phys., 47, 39 (2007). https://doi.org/10.1080/15568310701744133
  16. L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, "Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review", Desalination, 308, 15 (2013). https://doi.org/10.1016/j.desal.2010.11.033
  17. T. B. Kang and S. R. Hong, "Separation of Hydrogen-Nitrogen Gases by PDMS-NaA zeolite Mixed Matrix Membranes", Membr. J., 25, 295 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.3.295
  18. J. Ahn, W.-J. Chung, I. Pinnau, J. Song, N. Du, G. P. Robertson, and M. D. Guiver, "Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1)", J. Membr. Sci., 346, 280 (2010). https://doi.org/10.1016/j.memsci.2009.09.047
  19. C. Zhang, Y. Dai, J. R. Johnson, O. Karvan, and W. J. Koros, "High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations", J. Membr. Sci., 389, 34 (2012). https://doi.org/10.1016/j.memsci.2011.10.003
  20. Y. I. Park. H. R. Song, S. E. Nam, Y. K. Hwang, J. S. Chang, and U. H. Lee, "Preparation and characterization of mixed-matrix membranes containing MIL-100(Fe) for gas separation", Membr. J., 23, 432 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.432
  21. S. W. Kang, K. Char, and Y. S. Kang, "Novel application of partially positively charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes", Chem. Mater., 20, 1308 (2008). https://doi.org/10.1021/cm071516l
  22. Y. S. Kang, S. W. Kang, H. Kim, J. H. Kim, J. Won, C. K. Kim, and K. Char, "Interaction with olefins of the partially polarized surface of silver nanoparticles activated by p-benzoquinone and its implications for facilitated olefin transport", Adv. Mater., 19, 475 (2007). https://doi.org/10.1002/adma.200601009
  23. I. S. Chae, S. W. Kang, J. Y. Park, Y. G. Lee, J. H. Lee, J. Won, and Y. S. Kang, "Surface Energy-level tuning of silver nanoparticles for facilitated olefin transport", Angew. Chem. Int. Ed., 123, 3038 (2011). https://doi.org/10.1002/ange.201007557
  24. M. Zhou, D. Korelskiy, P. Ye, M. Grahn, and J. Hedlund, "A uniformly oriented MFI membrane for improved $CO_2$ separation", Angew. Chem. Int. Ed., 53, 3492 (2014). https://doi.org/10.1002/anie.201311324
  25. E. H. Cho, K. B. Kim, and J. W. Rhim, "Transport properties of PEBAX blended membranes with peg and glutaraldehyde for $SO_2$ and other gases", Polymer(KOREA), 38, 687 (2014).
  26. D.-H. Kim, H.-S. Im, M.-S. Kim, B.-S. Lee, B.-S. Lee, S.-W. Yoon, B.-S. Kim, Y.-I. Park, S.-I. Cheong, and J.-W. Rhim, "Study on the gas permeation behaviors of surface fluorinated polysulfone membranes", Polymer(KOREA), 33, 537 (2009).
  27. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390-400 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  28. T. Zhou, L. Luo, S. Hu, S. Wang, R. Zhang, H. Wu, Z. Jiang, B. Wang, and J. Yang, "Janus composite nanoparticle-incorporated mixed matrix membranes for $CO_2$ separation", J. Membr. Sci., 489, 1 (2015). https://doi.org/10.1016/j.memsci.2015.03.070
  29. J. W. Rhim, C. S. Lee, E. H. Cho, S. Y. Ha, and J. T. Chung, "Multi-stage Process study of pei-pdms hollow fiber composite membrane modules for $H_2$/$CO_2$ mixed gas separation", Membr. J., 23, 1 (2013).
  30. Y. Kong, H. Du, J. Yang, D. Shi, Y. Wang, Y. Zhang, and W. Xin, "Study on polyimide/$TiO_2$ nanocomposite membranes for gas separation", Desalination, 146, 49 (2002). https://doi.org/10.1016/S0011-9164(02)00476-9
  31. S. Matteucci, V. A. Kusuma, D. Sanders, S. Swinnea, and B. D. Freeman, "Gas transport in $TiO_2$ nanoparticle-filled poly(1-trimethylsilyl-1-propyne)", J. Membr. Sci., 307, 196 (2008). https://doi.org/10.1016/j.memsci.2007.09.035
  32. F. Moghadam, M. R. Omidkhah, E. Vasheghani- Farahani, M. Z. Pedram, and F. Dorosti, "The effect of $TiO_2$ nanoparticles on gas transport properties of Matrimid5218-based mixed matrix membranes", Sep. Purif. Technol., 77, 128 (2011). https://doi.org/10.1016/j.seppur.2010.11.032
  33. T. Yang and T. S. Chung, "High performance ZIF-8/PBI nano-composite membranes for high temperature hydrogen separation consisting of carbon monoxide and water vapor", Int. J. Hydrogen Energy, 38, 229 (2013). https://doi.org/10.1016/j.ijhydene.2012.10.045
  34. H. Y. Zhao, Z. Jin, H. M. Su, J. L. Zhang, X. D. Yao, H. J. Zhao, and G. S. Zhu, "Target synthesis of a novel porous aromatic framework and its highly selective separation of $CO_2/CH_4$", Chem. Commun., 49, 2780 (2013). https://doi.org/10.1039/c3cc38474h
  35. T.-S. Chung, L. Y. Jiang, Y. Li, and S. Kulprathipanja, "Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation", Prog. Polym. Sci., 32, 483 (2007). https://doi.org/10.1016/j.progpolymsci.2007.01.008
  36. P. Burmann, B. Zornoza, C. Tellez, and J. Coronas, "Mixed matrix membranes comprising MOFs and porous silicate fillers prepared via spin coating for gas separation", Chem. Eng. Sci., 107, 66 (2014). https://doi.org/10.1016/j.ces.2013.12.001
  37. D. K. Roh, S. J. Kim, W. S. Chi, J. K. Kim, and J. H. Kim, "Dual-functionalized mesoporous $TiO_2$ hollow nanospheres for improved $CO_2$ separation membranes", Chem. Commun., 50, 5717 (2014). https://doi.org/10.1039/c4cc00513a
  38. S. H. Ahn, D. J. Kim, W. S. Chi, and J. H. Kim, "Hierarchical double-shell nanostructures of $TiO_2$ nanosheets on $SnO_2$ hollow spheres for high-efficiency, solid-state, dye-sensitized solar cells", Adv. Func. Mater., 24, 5037 (2014). https://doi.org/10.1002/adfm.201400774
  39. S. H. Ahn, D. J. Kim, W. S. Chi, and J. H. Kim, "One-dimensional hierarchical nanostructures of $TiO_2$ nanosheets on $SnO_2$ nanotubes for high efficiency solid-state dye-sensitized solar cells", Adv. Mater., 25, 4893 (2013). https://doi.org/10.1002/adma.201302226
  40. W. S. Chi, S. J. Kim, S. J. Lee, Y. S. Bae, and J. H. Kim, "Enhanced performance of mixed-matrix membranes through a graft copolymer-directed interface and interaction tuning approach", Chem. Sus. Chem., 8, 650 (2015). https://doi.org/10.1002/cssc.201402677
  41. G. H. Hong, D. Song, I. S. Chae, J. H. Oh, and S. W. Kang, "Highly permeable poly (ethylene oxide) with silver nanoparticles for facilitated olefin transport", RSC Adv., 4, 4905 (2014). https://doi.org/10.1039/c3ra46506c
  42. T. Hirakawa and P. V. Kamat, "Charge separation and catalytic activity of Ag@ $TiO_2$ core-shell composite clusters under UV-irradiation", J. Am. Chem. Soc., 127, 3928 (2005). https://doi.org/10.1021/ja042925a
  43. I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, and L. M. Liz-Marzan, "One-pot synthesis of Ag@ $TiO_2$ core-shell nanoparticles and their layer-by-layer assembly", Langmuir, 16, 2731 (2000). https://doi.org/10.1021/la991212g