DOI QR코드

DOI QR Code

Effect of the pH Value of Seed Coating Solution on Microstructure of Silicalite-1 Zeolite Separation Layer Grown on α-Alumina Support

종결정 코팅용액 pH 값이 α-알루미나 지지체 표면에 성장하는 Silicalite-1 제올라이트 분리층의 미세구조에 미치는 영향

  • Hu, Sigui (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Kim, Min-Zy (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Lee, Du-Hyoung (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Sharma, Pankaj (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Han, Moon-Hee (Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Cho, Churl-Hee (Graduate School of Energy Science and Technology (GEST), Chungnam National University)
  • ;
  • 김민지 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 이두형 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • ;
  • 한문희 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 조철희 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2015.10.20
  • Accepted : 2015.10.23
  • Published : 2015.10.31

Abstract

The present study announces that the pH value of seed coating solution makes a significant effect on the microstructure of silicalite-1 zeolite layer formed on ${\alpha}$-alumina support. Seed with an average diameter of 75 nm was dispersed in ethanol to prepare three kinds of seed coating solutions with different pH values, and dip-coated on the support. The pH value was controlled to be 2.2, 7.0, and 9.3, respectively. In the secondary growth process, pH 7 seed solution resulted an uniform, 3 to $4{\mu}m$ thick, completely covered, and 100 nm grained silicalite-1 zeolite separation layer. The uniformity and completeness were explained by a uniform, closely packed, multi-layered, and completely covered seed coating in the pH 7 condition. In the condition, ${\alpha}$-alumina support and seed are oppositely charged: support is positively charged (8.4 mV) and seed, negatively (-1.7 mV). The opposite charging induced a strong electrostatic attraction between seed and support, which made the good seed coating state. On the other hand, pH 2.2 and pH 9.3 seed solutions resulted non-uniform, partially covered, and around $1{\mu}m$ grained zeolite separation layer, since seed and support are the same sign charged in the conditions. The same sign charging induced a strong electrostatic repulsion between seed and support which caused a low coverage of seed. It could be concluded that the pH value of seed coating solution is a key parameter to determine the microstructure of silicalite-1 zeolite separation layer.

본 연구에서는 silicalite-1 제올라이트 분리막 합성 시에 종결정 코팅용액 pH 변화가 제올라이트 분리층 미세구조에 미치는 영항을 고찰하였다. 75 nm 크기로 합성된 종결정은 에탄올에 분산된 후 침지코팅법으로 지지체 표면에 코팅되었으며 분산용액의 pH는 2.2, 7.0, 9.3으로 조절되었다. pH가 7인 경우, 균일하고 두께가 $3{\sim}4{\mu}m$인 silicalite-1 제올라이트 분리층이 형성되었고 분리층 결정입 크기는 100 nm로 미세하였다. 반면, pH가 2.2와 9.3인 경우, 분리층 두께가 얇고 불완전하였으며 분리층 결정입 크기도 약 $1{\mu}m$로 조대하였다. pH 7에서 완전한 제올라이트 분리층이 형성된 것은 침지코팅 중에 지지체와 종결정이 서로 다른 부호의 전하를 가져 정전기적 인력이 작용하여 균일하고 조밀하며 두껍고 다층의 종결정 코팅층이 형성되었기 때문이었다. 반면에 pH가 2.2와 9.3인 경우, 침지코팅 중에 지지체와 종결정이 서로 같은 부호의 전하를 가져 정전기적 반발력이 작용하기 때문에 불완전한 덮힘에 의하여 불완전한 분리층이 형성된다고 판단되었다. 결론적으로, 종결정 코팅용액의 pH가 silicalite-1 제올라이트 분리층의 두께, 결정립 크기 등 미세구조를 결정하는 중요한 인자임을 확인할 수 있었다.

Keywords

References

  1. M. Pan and Y. S. Lin "Template-free secondary growth synthesis of MFI type zeolite membranes", Micropor. Mesopor. Mater., 319, 43 (2001).
  2. S. J. Jeong, J. G. Yeo, M. H. Han, and C. H. Cho, "A study on permeation of $CO_2-N_2-O_2$ mixed gases through a NaY zeolite membrane under permeate evacuation mode", Membr. J., 23, 343 (2013).
  3. M. J. Kim, P. Sharma, M. H. Han, and C. H. Cho, "Effect of seed coating layer on the microstructure of NaA zeolite separation layer grown on ${\alpha}$ -alumina support", Membr. J., 24, 378 (2014).
  4. Y. Yan, M. E. Davis, and G. R. Gavalas, "Preparation of highly selective zeolite ZSM-5 membranes by a post-synthetic coking treatment", J. Membr. Sci., 123, 95 (1997). https://doi.org/10.1016/S0376-7388(96)00206-2
  5. Q. Liu, R. Noble, J. L. Falconer, and H. Funke, "Organics/water separation by pervaporation with a zeolite membrane", J. Membr. Sci., 117, 163 (1996). https://doi.org/10.1016/0376-7388(96)00058-0
  6. Y. Yan and T. Bein, "Zeolite thin films with tunable molecular sieve function", J. Am. Chem. Soc., 117, 9990 (1995). https://doi.org/10.1021/ja00145a008
  7. M. Nomura, T. Yamaguchi, and S. i. Nakao, "Silicalite membranes modified by counter diffusion CVD technique", Ind. Eng. Chem. Res., 36, 4217 (1997). https://doi.org/10.1021/ie970338a
  8. C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, Y. H. Kim, and S. H. Hyun, "Secondary growth of sodium type faujasite zeolite layers on a porous ${\alpha}$ -$Al_2O_3$ tube and the $CO_2/N_2$ separation", Membr. J., 17, 254 (2007).
  9. A. J. Burggraafa, Z. A. E. P. Vroon, K. Keizer, and H. Verweij, "Permeation of single gases in thin zeolite MFI membranes", J. Membr. Sci., 77, 144 (1998).
  10. T. Kuzniatsova, Y. H. Kim, K. Shqau, P. K. Dutta, and H. Verweij, "Zeta potential measurements of zeolite Y: Application in homogeneous deposition of particle coatings", Micropor. Mesopor. Mater., 102, 103 (2007).
  11. J. H. Dong, Y. S. Lin, M. Z. C. Hu, R. A. Peascoe, and E. A. Payzant, "Template removal associated micro structural development of porous ceramic supported MFI zeolite membranes", Micropor. Mesopor. Mater., 241, 34 (2000).
  12. J. H. Dong, K. Wegner, and Y. S. Lin, "Synthesis of submicron polycrystalline MFI zeolite films on porous ceramic supports", J. Membr. Sci., 233, 148 (1998).
  13. H. Kita, K. Horii, Y. Ohtoshi, K. Tanaka, and K. I. Okamoto, "Synthesis of a zeolite NaA membrane for pervaporation of water/organic liquid mixtures", J. Mater. Sci. Lett., 14, 206 (1995). https://doi.org/10.1007/BF00318258
  14. L. C. Boudreau and M. Tsapatsis, "A highly oriented thin film of zeolite A", Chem. Mater., 9, 1705 (1997). https://doi.org/10.1021/cm970151+
  15. Y. Yan, S. R. Chaudhuri, and A. Sarkar, "Synthesis of oriented zeolite molecular sieve films with controlled morphologies", Chem. Mater., 8, 473 (1996). https://doi.org/10.1021/cm950393e
  16. H. R. Lee, H. S. Ahn, I. J. Park, S. B. Lee, and Y. Lee, "Pervaporation of aqueous iso-propyl alcohol solution using NaA zeolite membrane", Membr. J., 16, 25 (2006).
  17. M. Yun, H. K. Jeong, D. Jeong, H. S. Ahn, and Y. Lee, "Pervaporation characteristics of NaA type zeolite membrane substituted to $K^+$", Membr. J., 18, 250 (2008).
  18. Y. J. Fu, C. C. Hu, K. R. Lee, and J. Y. Lai, "Separation of ethanol/water mixtures by pervaporation through zeolite-filled polysulfone membrane containing 3-aminopropyltrimethoxysilane", Desalination, 193, 119 (2006). https://doi.org/10.1016/j.desal.2005.07.049
  19. A. Huang, Y. S. Lin, and W. Yang, "Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding", J. Membr. Sci., 245, 41 (2004). https://doi.org/10.1016/j.memsci.2004.08.001
  20. G. Bonilla, M. Tsapatsis, D. G. Viachos, and G. Xomeritakis, "Fluorescence confocal optical microscopy imaging of the grain boundary structure of zeolite MFI membranes made by secondary (seeded) growth", J. Membr. Sci., 182, 103 (2001). https://doi.org/10.1016/S0376-7388(00)00549-4
  21. M. D. Jia, B. Chen, R. D. Noble, and J. L. Falconer, "Ceramic-zeolite composite membranes and their application for separation of vapor/gas mixtures", J. Membr. Sci., 1, 90 (1994).
  22. M. Tsapatsis, M. Lovallo, T. Okubo, M. E. Davis, and M. Sadakata, "Characterization of zeolite L nanoclusters", Chem. Mater., 7, 1734 (1995). https://doi.org/10.1021/cm00057a025
  23. J. Warzywoda, R. D. Edelman, and R. W. Thompson, "Crystallization of high-silica ZSM-5 in the presence of seeds", Zeolites, 11, 318 (1991). https://doi.org/10.1016/0144-2449(91)80294-A
  24. X. Xu, W. Yang, J. Liu, and L. Lin, "Synthesis and perfection evaluation of NaA zeolite membrane", Sep. Purif. Technol., 25, 475 (2001). https://doi.org/10.1016/S1383-5866(01)00077-6
  25. E. A. Tsokanis and R. W. Thompson, "Further investigations of nucleation by initial breeding in the Al-free NH4-ZSM-5 system", Zeolites, 12, 369 (1992). https://doi.org/10.1016/0144-2449(92)90032-K
  26. L. Gora and R. W. Thompson, "Controlled addition of aged mother liquor to zeolite NaA synthesis solutions", Zeolites, 18, 132 (1997). https://doi.org/10.1016/S0144-2449(96)00163-7
  27. J. Hedlund, J. Sterte, M. Anthonis, A. J. Bons, B. Carstensen, N. Corcoran, D. Cox, H. Deckman, W. D. Gijnst, P. D. Moor, F. Lai, J. Mchenry, W. Mortier, J. Reinoso, and J. Peters, "Size-dependent properties of nanocrystalline silicalite synthesized with synthematically varied crystal sized", Langmuir, 4696, 20 (2004).
  28. T. Seike, M. Matsuda, and M. Miyake, "Fabrication of Y-type zeolite films by electrophoretic deposition", Solid State Ionics, 123, 151 (2002).
  29. V. Nikolakis, M. Tsapatsis, and D. G. Vlachos, "Physicochemical characterization of silicalite-1 surface and its implications on crystal growth", Langmuir, 4619, 19 (2003).
  30. R. Xu, J. Chen, Z. Gao, W. Yan, and E. A. Payzant, "From zeolite from to porous MOF materials- the 40th anniversary of international zeolite conference", pp. 102-105, Elsevier, Beijing (2007).
  31. J. K. Lee, K. S. Boo, S. C. Kim, and W. K. Kim, "Zeta potential measurement of colloid particles suspended in a liquid", Trans. Korean Soc. Mech. Eng. B, 2, 339 (1995).
  32. T. M. Davis, T. O. Drews, H. Ramana, C. He, J. Dong, H. Schnablegger, M. A. Katsoulaskis, E. Kokkoli, A. V. McCormick, R. L. Penn, and M. Tsapatsis, "Mechanistic principles of nanoparticle evolution to zeolite crystals", Nature Materials, 5, 400-408 (2006). https://doi.org/10.1038/nmat1636