DOI QR코드

DOI QR Code

Preparation of Novel Polyvinylidene Fluoride (PVdF) Cation Exchange Heterogeneous Membrane and Their Adsorption Properties of Ion Selectivity

Polyvinylidene Fluoride (PVDF) 양이온 불균질막 제조 및 이온선택 흡착 특성

  • Jeong, Min Ho (Department of Chemical Engineering, College of Enginerring, Chungnam National University) ;
  • Ko, Dea Young (Department of Chemical Engineering, College of Enginerring, Chungnam National University) ;
  • Hwang, Taek Sung (Department of Chemical Engineering, College of Enginerring, Chungnam National University)
  • Received : 2015.09.30
  • Accepted : 2015.10.26
  • Published : 2015.10.31

Abstract

The study was evaluated and compared to commercial heterogeneous membrane in order to make cation exchange membrane set up the optimal preparing condition. The research findings show that ion exchange resin was added more than 40 wt% in order to show chemical properties of HPVDF higher than commercial heterogeneous membrane. But ion exchange resin was added less than 40 wt% in order to show mechanical properties of HPVDF higher than commercial heterogeneous membrane. According to conditions above, Electrical resistance was $1.83{\Omega}{\cdot}cm^{-1}$, water uptake was 79%, ion exchange capacity was 1.60 meq/g, and burst strength was 0.97 MPa. Also The TDS remove efficiency was measured by approximately 40%.

이 연구는 양이온 불균질막을 제조하기 위해 PVdF와 상용 양이온교환수지를 배합하여 제조하고 최적의 조건제시 및 기존 상용화막과 비교 평가하였다. 연구결과 불균질막이 기존의 상용화막보다 이온교환용량, 전기저항, 함수율 부분에서 높은 물성을 나타내기 위해서는 이온교환수지의 무게 비율을 40% 이상 첨가해야 한다는 것을 확인하였다. 인장강도가 상용화막보다 높기 위해서는 이온교환수지의 무게 비율을 50% 이하로 첨가해야 한다는 것을 확인하였다. 따라서 화학적 특성과 기계적 특성을 고려했을 때, PVdF와 이온교환분말의 최적 비율은 60 : 40이며, 이때의 전기저항 $1.82{\Omega}{\cdot}cm^{-1}$, 함수율 79%, 이온교환용량 1.60 meq/g으로 측정되었고 기계적 강도는 0.97 MPa로 측정되었다. 이때, TDS 제거율은 약 40%로 측정되었다.

Keywords

References

  1. S. M. Hosseini, S. S. Madaeni, A. R. Heidari, and A. Amirimehr, "Preparation and characterization of ion-selective polyvinyl chloride based heterogeneous cation exchange membrane modified by magnetic iron-nickel oxide nanoparticles", Desalination, 284, 191 (2012). https://doi.org/10.1016/j.desal.2011.08.057
  2. R. K. Nagarale, G. S. Gohil, V. K. Shahi, and R. Rangarajan, "Preparation and electrochemical characterizations of cation-exchange membranes with different functional groups", Colloids Surfaces A Physicochem. Eng. Asp., 251, 133 (2004). https://doi.org/10.1016/j.colsurfa.2004.09.028
  3. L. Yan and J. Wang, "Development of a new polymer membrane-PVB/PVDF blended membrane", Desalination, 281, 455 (2011). https://doi.org/10.1016/j.desal.2011.08.024
  4. C. S. Lee, H. S. Shin, J. H. Jun, S. Y. Jung, and J. W. Rhim, "Recent Development Trends of Cation Exchange Membrane Materials", Membr. J., 12, 1 (2002).
  5. G. S. Gohil, V. K. Shahi, and R. Rangarajan, "Comparative studies on electrochemical characterization of homogeneous and heterogeneous type of ion-exchange membranes", J. Membr. Sci., 240, 211 (2004). https://doi.org/10.1016/j.memsci.2004.04.022
  6. P. V. Vyas, B. G. Shah, G. S. Trivedi, P. Ray, S. K. Adhikary, and R. Rangarajan, "Characterization of heterogeneous anion-exchange membrane", J. Membr. Sci., 187, 39 (2001). https://doi.org/10.1016/S0376-7388(00)00613-X
  7. S. M. Hosseini, B. Rahzani, H. Asiani, A. R. Khodabakhshi, A. R. Hamidi and S. S. Madaeni et al., "Surface modification of heterogeneous cation exchange membranes by simultaneous using polymerization of (acrylic acid-co-methyl methacrylate): Membrane characterization in desalination process", Desalination, 345, 13 (2014). https://doi.org/10.1016/j.desal.2014.04.028
  8. A. R. Moghadassi, P. Koranian, S. M. Hosseini, M. Askari, and S. S. Madaeni, "Surface modification of heterogeneous cation exchange membrane through simultaneous using polymerization of PAA and multi walled carbon nano tubes", J. Ind. Eng. Chem., 20, 2710 (2014). https://doi.org/10.1016/j.jiec.2013.10.059
  9. J. Schauer and L. Brozova, "Heterogeneous ion-exchange membranes based on sulfonated poly (1,4-phenylene sulfide) and linear polyethylene: preparation, oxidation stability, methanol permeability and electrochemical properties", J. Membr. Sci., 250, 151 (2005). https://doi.org/10.1016/j.memsci.2004.09.047
  10. T. S. Hwang and J. R. Choi, "The Preparation and its Properties of Heterogeneous Anion Exchange Membrane from Polyethylene Matrix with 4-Vinylpyridine- divinylbenzene", Korean J. Mater. Res., 8, 1061 (1998).
  11. B. G. Shah, V. K. Shahi, S. K. Thampy, R. Rangarajan, and P. K. Ghosh, "Comparative studies on performance of interpolymer and heterogeneous ion-exchange membranes for water desalination by electrodialysis", Desalination, 172, 257 (2005). https://doi.org/10.1016/j.desal.2004.06.204
  12. N. Chen and L. Hong, "Proton-conducting membrane composed of sulfonated polystyrene microspheres, poly(vinylpyrrolidone) and poly(vinylidene fluoride)", Solid State Ionics., 146, 377 (2002). https://doi.org/10.1016/S0167-2738(01)01014-1
  13. J. V Gasa, S. Boob, R. A. Weiss, and M. T. Shaw, "Proton-exchange membranes composed of slightly sulfonated poly(ether ketone ketone) and highly sulfonated crosslinked polystyrene particles", J. Membr. Sci., 269, 177 (2006). https://doi.org/10.1016/j.memsci.2005.06.033
  14. X. Li, Z. Wang, H. Lu, C. Zhao, H. Na, and C. Zhao, "Electrochemical properties of sulfonated PEEK used for ion exchange membranes", J. Membr. Sci., 254, 147 (2005). https://doi.org/10.1016/j.memsci.2004.12.051
  15. K. Hu, T. Xu, W. Yang, and Y. Fu, "Preparation of novel heterogeneous cation-permeable membranes from blends of sulfonated poly(phenylene sulfide) and poly(ether sulfone)", J. Appl. Polym. Sci., 91, 167 (2004). https://doi.org/10.1002/app.13163
  16. S. M. Hosseini, S. S. Madaeni, A. Zendehnam, A. R. Moghadassi, A. R. Khodabakhshi, and H. Sanaeepur, "Preparation and characterization of PVC based heterogeneous ion exchange membrane coated with Ag nanoparticles by (thermal-plasma) treatment assisted surface modification", J. Ind. Eng. Chem., 19, 854 (2013). https://doi.org/10.1016/j.jiec.2012.10.031
  17. A. Zendehnam, S. Mokhtari, S. M. Hosseini, and M. Rabieyan, "Fabrication of novel heterogeneous cation exchange membrane by use of synthesized carbon nanotubes-co-copper nanolayer composite nanoparticles: Characterization, performance in desalination", Desalination, 347, 86 (2014). https://doi.org/10.1016/j.desal.2014.05.041
  18. S. M. Hosseini, a. Gholami, P. Koranian, M. Nemati, S. S. Madaeni, and A. R. Moghadassi, "Electrochemical characterization of mixed matrix heterogeneous cation exchange membrane modified by aluminum oxide nanoparticles: Mono/bivalent ionic transportation", J. Taiwan Inst. Chem., Eng., 45, 1241 (2014). https://doi.org/10.1016/j.jtice.2014.01.011
  19. S. M. Hosseini, S. S. Madaeni, A. R. Khodabakhshi, and A. Zendehnam, "Preparation and surface modification of PVC/SBR heterogeneous cation exchange membrane with silver nanoparticles by plasma treatment", J. Membr. Sci., 365, 438 (2010). https://doi.org/10.1016/j.memsci.2010.09.043
  20. S. M. Hosseini, S. S. Madaeni, and A. R. Khodabakhshi, "Preparation and characterization of ABS/HIPS heterogeneous anion exchange membrane filled with activated carbon", J. Appl. Polym. Sci., 118, 3371 (2010). https://doi.org/10.1002/app.32369
  21. G. Kang and Y. Cao, "Application and modification of poly(vinylidene fluoride) (PVDF) mem branes-A review", J. Membr. Sci., 463, 145 (2014). https://doi.org/10.1016/j.memsci.2014.03.055
  22. Y. Wu, X. Yu, Y. Yang, B. Li, and Y. Han, "Studies on the reactive polyvinylidene fluoride- polyamide 6 interfaces: rheological properties and interfacial width", Polymer (Guildf), 46, 2365 (2005). https://doi.org/10.1016/j.polymer.2005.01.048
  23. M.-C. Clochard, J. Begue, A. Lafon, D. Caldemaison, C. Bittencourt, and J.-J. Pireaux, "Tailoring bulk and surface grafting of poly(acrylic acid) in electron-irradiated PVDF", Polymer (Guildf), 45, 8683 (2004). https://doi.org/10.1016/j.polymer.2004.10.052
  24. N. Yoshida, T. Ishisaki, A. Watakabe, and M. Yoshitake, "Characterization of $Flemion^{(R)}$ membranes for PEFC", Electrochim. Acta., 43, 3749 (1998). https://doi.org/10.1016/S0013-4686(98)00133-9
  25. N.-S. Kwak, J. S. Koo, T. S. Hwang, and E. M. Choi, "Synthesis and electrical properties of NaSS-MAA-MMA cation exchange membranes for membrane capacitive deionization (MCDI)", Desalination, 285, 138 (2012). https://doi.org/10.1016/j.desal.2011.09.046
  26. P. Kumar, K. Dutta, S. Das, and P. P. Kundu, "Membrane prepared by incorporation of crosslinked sulfonated polystyrene in the blend of PVdF-co-HFP/Nafion: A preliminary evaluation for application in DMFC", Appl. Energy., 123, 66 (2014). https://doi.org/10.1016/j.apenergy.2014.02.060
  27. J. H. Yang, K. H. Yeon, and S. H. Moon, "Scale Formation in the Concentrate Compartment of an Electrodialysis Stack During Desalination of Brackish Water", Membr. J., 15, 175 (2005).
  28. J. H. Song and S. H. Moon, "Principles and Current Technologies of Continuous Electrodeionization", Membr. J., 16, 167 (2006).
  29. D. J. Lin, C. L. Chang, F. M. Huang, and L. P. Cheng, "Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/Water/DMF/PVDF system", Polymer, 44, 413 (2003). https://doi.org/10.1016/S0032-3861(02)00731-0