DOI QR코드

DOI QR Code

Olefin Separation Membranes Based on PEO/PDMS-g-POEM Blends Containing AgBF4/Al(NO3)3 Mixed Salts

AgBF4/Al(NO3)3 혼합염이 포함된 PEO/PDMS-g-POEM 블렌드 기반의 올레핀 분리막

  • Kim, Sang Jin (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Jung, Jung Pyu (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Park, Cheol Hun (Department of Chemical and Biomolecular Engineering, Yonsei University) ;
  • Kim, Jong Hak (Department of Chemical and Biomolecular Engineering, Yonsei University)
  • 김상진 (연세대학교 화공생명공학과) ;
  • 정정표 (연세대학교 화공생명공학과) ;
  • 박철훈 (연세대학교 화공생명공학과) ;
  • 김종학 (연세대학교 화공생명공학과)
  • Received : 2015.12.09
  • Accepted : 2015.12.17
  • Published : 2015.12.31

Abstract

Facilitated transport is one of the possible solutions to simultaneously improve permeability and selectivity, which is challenging in conventional polymer-based membranes. Olefin/paraffin separation using facilitated transport membrane has received much attention as an alternative solution to the conventional distillation process. Herein, we report olefin separation composite membranes based on the polymer blends containing $AgBF_4/Al(NO_3)_3$ mixed salts. Free radical polymerization process was used to synthesize an amphiphilic graft copolymer of poly(dimethyl siloxane)-graft- poly(ethylene glycol) methyl ether methacrylate (PDMS-g-POEM). In addition, poly(ethylene oxide) (PEO) was introduced to the PDMS-g-POEM graft copolymer to form polymer blends with various ratios. The propylene/propane mixed-gas selectivity and permeance reached up to 5.6 and 10.05 GPU, respectively, when the PEO loading was 70 wt% in polymer blend. The improvement of olefin separation performance was attributed to the olefin facilitating silver ions as well as the highly permeable blend matrix. The stabilization of silver ions in the composite membrane was achieved through the introduction of $Al(NO_3)_3$ which suppressed the reduction of silver ions to silver particles.

촉진수송은 기존의 고분자 막에서는 힘든, 투과도와 선택도를 동시에 향상시킬 수 있는 기술 중 한 가지이다. 촉진수송 분리막을 이용한 올레핀/파라핀 분리는 기존의 증류공정을 대체할 수 있는 기술로써 많은 관심을 받아왔다. 본 연구에서는 테트라플루오로붕산은/질산알루미늄의 혼합염이 포함된 고분자 블렌드 기반의 촉진수송 올레핀 분리막을 제조하였다. 자유 라디칼중합법을 이용하여 폴리다이메틸실록세인-g-폴리옥시에틸렌 메타크릴레이트 가지형 공중합체를 합성하였다. 또한, 폴리다이메틸실록세인-g-폴리옥시에틸렌 메타크릴레이트 매질에 폴리에틸렌옥사이드를 다양한 비율로 혼합하였다. 폴리에틸렌옥사이드를 폴리다이메틸실록세인-g-폴리옥시에틸렌 메타크릴레이트 가지형 공중합체 질량 대비 70%를 혼합하였을 때, 혼합기체 선택도 및 투과도는 5.6 및 10.05 GPU에 도달하였다. 이와 같은 복합막의 올레핀 분리 성능이 향상된 이유는, 분리막에 첨가된 은이온이 올레핀 기체분자의 선택적인 촉진 수송을 하였고, 또한 고투과성의 고분자 블렌드가 사용되었기 때문이다. 또한 은이온의 은나노입자로의 환원을 억제시키는 질산알루미늄의 첨가로 인해 복합막의 장시간 안정도를 향상시킬 수 있었다.

Keywords

References

  1. J.-S. Yang and G.-H. Hsiue, "C4 olefin/paraffin separation by poly [(1-trimethylsilyl)-1-propyne]-graft-poly (acrylic acid)-$Ag^+$ complex membranes", J. Membr. Sci., 111, 27-38 (1996). https://doi.org/10.1016/0376-7388(95)00260-X
  2. S. W. Kang, K. Char, and Y. S. Kang, "Novel application of partially positively charged silver nanoparticles for facilitated transport in olefin/paraffin separation membranes", Chem. Mater., 20, 1308 (2008). https://doi.org/10.1021/cm071516l
  3. N. Du, H. B. Park, M. M. Dal-Cin, and M. D. Guiver, "Advances in high permeability polymeric membrane materials for $CO_2$ separations", Energy Environ. Sci., 5, 7306-7322 (2012). https://doi.org/10.1039/C1EE02668B
  4. S. Li, Z. Wang, X. Yu, J. Wang, and S. Wang, "High-performance membranes with multi-permselectivity for $CO_2$ separation", Adv. Mater., 24, 3196-3200 (2012). https://doi.org/10.1002/adma.201200638
  5. L. Y. Ng, A. W. Mohammad, C. P. Leo, and N. Hilal, "Polymeric membranes incorporated with metal/metal oxide nanoparticles: a comprehensive review", Desalination, 308, 15 (2013). https://doi.org/10.1016/j.desal.2010.11.033
  6. Y. I. Park, H. R. Song, S. E. Nam, Y. K. Hwang, J. S. Chang, and U. H. Lee, "Preparation and characterization of mixed-matrix membranes containing MIL-100(Fe) for gas separation", Membr. J., 23, 432-438 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.432
  7. S. Y. Nam and D. J. Kim, "Research and development trends of polyimide based material for gas separation", Membr. J., 23, 393-408 (2013). https://doi.org/10.14579/MEMBRANE_JOURNAL.2013.23.6.393
  8. M. Rao and S. Sircar, "Nanoporous carbon membranes for separation of gas mixtures by selective surface flow", J. Membr. Sci., 85, 253-264 (1993). https://doi.org/10.1016/0376-7388(93)85279-6
  9. H. Lonsdale, "The growth of membrane technology", J. Membr. Sci., 10, 81-181 (1982). https://doi.org/10.1016/S0376-7388(00)81408-8
  10. J. Van Dongen and C. Beverwijk, "Alkene-and arene-${\pi}$-complex formation with silver (I); a 13 C NMR study", J. Organomet. Chem., 51, C36-C38 (1973). https://doi.org/10.1016/S0022-328X(00)93492-2
  11. W. Ho and D. Dalrymple, "Facilitated transport of olefins in $Ag^+$-containing polymer membranes", J. Membr. Sci., 91, 13-25 (1994). https://doi.org/10.1016/0376-7388(94)00008-5
  12. D. J. Safarik and R. B. Eldridge, "Olefin/paraffin separations by reactive absorption: a review", Ind. Eng. Chem. Res., 37, 2571-2581 (1998). https://doi.org/10.1021/ie970897h
  13. H. Y. Huang, J. Padin, and R. T. Yang, "Anion and cation effects on olefin adsorption on silver and copper halides: Ab initio effective core potential study of ${\pi}$-complexation", J. Phys. Chem. B, 103, 3206-3212 (1999). https://doi.org/10.1021/jp982857c
  14. J. Hong, E. Y. Lee, and S. W. Kang, "Preparation and Characterization of Highly Permeable Facilitated Olefin Transport Nanocomposite Membrane Utilizing 7,7,8,8-tetracyanoquinodimethane", Membr. J., 24, 417-422 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.417
  15. S. Sunderrajan, B. Freeman, C. Hall, and I. Pinnau, "Propane and propylene sorption in solid polymer electrolytes based on poly (ethylene oxide) and silver salts", J. Membr. Sci., 182, 1-12 (2001). https://doi.org/10.1016/S0376-7388(00)00569-X
  16. I. Pinnau and L. G. Toy, "Solid polymer electrolyte composite membranes for olefin/paraffin separation", J. Membr. Sci., 184, 39-48 (2001). https://doi.org/10.1016/S0376-7388(00)00603-7
  17. S. Hong, J. H. Jin, J. Won, and Y. Kang, "Polymer-salt complexes containing silver ions and their application to facilitated olefin transport membranes", Adv. Mater., 12, 968-971 (2000). https://doi.org/10.1002/1521-4095(200006)12:13<968::AID-ADMA968>3.0.CO;2-W
  18. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, "Role of transient cross-links for transport properties in silver-polymer electrolytes", Macromolecules, 34, 6052-6055 (2001). https://doi.org/10.1021/ma0020032
  19. J. H. Kim, B. R. Min, C. K. Kim, J. Won, and Y. S. Kang, "Ionic interaction behavior and facilitated olefin transport in poly (n-vinyl pyrrolidone): Silver triflate electrolytes; Effect of molecular weight", J. Polym. Sci., Part B: Polym. Phys., 40, 1813-1820 (2002). https://doi.org/10.1002/polb.10241
  20. J. H. Kim, B. R. Min, J. Won, and Y. S. Kang, "Revelation of facilitated olefin transport through silver-polymer complex membranes using anion complexation", Macromolecules, 36, 4577-4581 (2003). https://doi.org/10.1021/ma0340210
  21. Y. L. Choi, E. Y. Lee, and S. W. Kang, "Utilization of iodine for the enhanced permeance of facilitated olefin transport nanocomposite membrane", Membr. J., 24, 448-452 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.448
  22. D. Ji and S. W. Kang, "Study for facilitated olefin transport phenomena using silver oxide", Membr. J., 25, 1-6 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.1.1
  23. D. Bodas and C. Khan-Malek, "Hydrophilization and hydrophobic recovery of PDMS by oxygen plasma and chemical treatment-An SEM investigation", Sens. Actuators. B, 123, 368-373 (2007). https://doi.org/10.1016/j.snb.2006.08.037
  24. T. Hu, G. Dong, H. Li, and V. Chen, "Effect of PEG and PEO-PDMS copolymer additives on the structure and performance of Matrimid(R) hollow fibers for $CO_2$ separation", J. Membr. Sci., 468, 107-117 (2014). https://doi.org/10.1016/j.memsci.2014.05.024
  25. A. Kargari, A. A. Shamsabadi, and M. B. Babaheidari, "Influence of coating conditions on the $H_2$ separation performance from $H_2/CH_4$ gas mixtures by the PDMS/PEI composite membrane", Int. J. Hydrogen Energy, 39, 6588-6597 (2014). https://doi.org/10.1016/j.ijhydene.2014.02.009
  26. A. A. M. Salih, C. Yi, H. Peng, B. Yang, L. Yin, and W. Wang, "Interfacially polymerized polyetheramine thin film composite membranes with PDMS inter-layer for $CO_2$ separation", J. Membr. Sci., 472, 110-118 (2014). https://doi.org/10.1016/j.memsci.2014.08.025
  27. M. Fang, C. Wu, Z. Yang, T. Wang, Y. Xia, and J. Li, "ZIF-8/PDMS mixed matrix membranes for propane/nitrogen mixture separation: Experimental result and permeation model validation", J. Membr. Sci, 474, 103-113 (2015). https://doi.org/10.1016/j.memsci.2014.09.040
  28. T. C. Merkel, V. I. Bondar, K. Nagai, B. D. Freeman, and I. Pinnau, "Gas sorption, diffusion, and permeation in poly(dimethylsiloxane)", J. Polym. Sci., B: Polym. Phys., 38, 415-434 (2000). https://doi.org/10.1002/(SICI)1099-0488(20000201)38:3<415::AID-POLB8>3.0.CO;2-Z
  29. S. W. Kang, J. H. Kim, J. Won, and Y. S. Kang, "Suppression of silver ion reduction by $Al(NO_3)_3$ complex and its application to highly stabilized olefin transport membranes", J. Membr. Sci., 445, 156-159 (2013). https://doi.org/10.1016/j.memsci.2013.06.010
  30. D. Song, Y. S. Kang, and S. W. Kang, "Highly permeable and stabilized olefin transport membranes based on a poly(ethylene oxide) matrix and $Al(NO_3)_3$", J. Membr. Sci., 474, 273-276 (2015). https://doi.org/10.1016/j.memsci.2014.09.050
  31. B. Jose, J. H. Ryu, B. G. Lee, H. Lee, Y. S. Kang, and H. S. Kim, "Effect of phthalates on the stability and performance of $AgBF_4$-PVP membranes for olefin/paraffin separation", Chem. Commun., 2046-2047 (2001).
  32. J. H. Koh, Y. W. Kim, J. T. Park, and J. H. Kim, "Templated synthesis of silver nanoparticles in amphiphilic poly(vinylidene fluoride-co-chlorotrifluoroethylene) comb copolymer", J. Polym. Sci., B: Polym. Phys., 46, 702-709 (2008).
  33. S. U. Celik and A. Bozkurt, "Preparation and proton conductivity of acid-doped 5-aminotetrazole functional poly(glycidyl methacrylate)", Eur. Polym. J., 44, 213-218 (2008). https://doi.org/10.1016/j.eurpolymj.2007.10.010
  34. H. Jeon, C. S. Lee, R. Patel, and J. H. Kim, "Well-organized meso-macroporous $TiO_2/SiO_2$ film derived from amphiphilic rubbery comb copolymer", ACS Appl. Mater. Interfaces, 7, 7767-7775 (2015). https://doi.org/10.1021/acsami.5b01010
  35. S. J. Kim, H. Jeon, D. J. Kim, and J. H. Kim, "High-performance polymer membranes with multifunctional amphiphilic micelles for $CO_2$ capture", Chem. Sus. Chem., 8, 3783-3792 (2015). https://doi.org/10.1002/cssc.201501063
  36. G. H. Hong, D. Song, I. S. Chae, J. H. Oh, and S. W. Kang, "Highly permeable poly(ethylene oxide) with silver nanoparticles for facilitated olefin transport", RSC Adv., 4, 4905-4908 (2014). https://doi.org/10.1039/c3ra46506c