DOI QR코드

DOI QR Code

Characterization and Preparation of PEG-Polyimide Copolymer Asymmetric Flat Sheet Membranes for Carbon Dioxide Separation

이산화탄소 분리를 위한 폴리에틸렌글리콜계 폴리이미드 공중합체 비대칭 평판형 분리막의 제조 및 기체 투과 특성평가

  • Park, Jeong Ho (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Kim, Deuk Ju (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University) ;
  • Nam, Sang Yong (Department of Materials Engineering and Convergence Technology, Engineering Research Institute, Gyeongsang National University)
  • 박정호 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 김득주 (경상대학교 나노신소재융합공학과, 공학연구원) ;
  • 남상용 (경상대학교 나노신소재융합공학과, 공학연구원)
  • Received : 2015.12.19
  • Accepted : 2015.12.28
  • Published : 2015.12.31

Abstract

In this study, we synthesized polyimide with high carbon dioxide gas transport property using 2,2-bis(3,4-carboxylphenyl) hexafluoropropane, 2,3,5,6-tetramethyl-1,4-phenylenediamine and poly(ethylene glycol) bis(3-aminopropyl) terminated and then we calculated solubility parameter of synthesized polymer and non-solvent phase separation coefficient to determine proper solvent for preparation of asymmetric membrane, also we measured the viscosity of the polymer solution to check polymer contents in membrane solution and prepare asymmetric membrane with $LiNO_3$ additives. The morphology and gas separation property of membrane prepared by phase separation method was confirmed using Field Emission Scanning Electron Microsope and the single gas permeation measurement apparatus. We confirmed that the carbon dioxide permeance of the membrane increased and the selectivity showed little change with decreasing of the volatile solvent contents.

본 연구에서는 높은 이산화탄소 분리성능을 가지는 폴리이미드의 제조를 위해 2,2-bis(3,4-carboxylphenyl) hexafluoropropane과 두종류의 아민인 2,3,5,6-tetramethyl-1,4-phenylenediamine, Poly(ethylene glycol) bis(3-aminopropyl) terminated을 이용하여 합성을 진행하였다. 합성된 고분자를 비용매 상전이법으로 비대칭 분리막을 제조하기 위하여 고분자의 용해도 지수 추정 값과 비용매 상전이 계수 측정을 통해 용매를 선정하였고, 고분자 용액 점도 측정을 통해 분리막 제조를 위한 도프용액 중의 고분자의 함량을 결정하여 질산리튬을 첨가제로 사용하여 최종적으로 분리막을 제조하였다. 제조된 평판형 비대칭 분리막은 전자주사현미경(SEM)을 통해 질산리튬과 휘발성 용매 함량에 변화에 따른 모폴로지의 변화를 확인하였으며, 이의 변화에 따른 기체 투과도 변화를 확인하였다. 분리막 제조를 위한 도프용액 중의 휘발성 용매 함량이 작을수록 선택도 변화가 없으면서 이산화탄소 투과도가 증가하는 것을 확인하였다.

Keywords

References

  1. W. J. Jang, Y. I. Yoon, S. D. Park, Y. W. Rhee, and I. H. Baek, "Absorption of $CO_2$ using mixed aqueous solution of N-methyldiethanolamine with piperazine for pre-combustion $CO_2$ capture", J. Ind. Eng. Chem., 19, 645 (2009).
  2. S. H. Jhung and J. S. Chang, "Adsorption and Storage of Natural Gas by Nanoporous Adsorbents", J. Ind. Eng. Chem., 20, 117 (2009).
  3. Y. J. Yoo, H. S. Kim, R. Singh, P. Xiao, P. A. Webley, and A.L. Chaffee, "Preparation of NaX zeolite coated honeycomb adsorbents and It's carbon dioxide adsorption characteristics", J. Ind. Eng. Chem., 20, 663 (2009).
  4. S. E. Nam, A. Park, and Y. I. Park, "Separation and recovery of f-gases", Membr. J., 23, 15 (2013).
  5. R. E. Kesting and A. Fritzsche, "Polymeric gas separation membranes", pp. 1-14, John Wiley and Sons, New York, NY (1993).
  6. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  7. H. Ohya, V. V Kudryavtsev, and S. I. Semenova, "Polyimide membranes-applications, fabrication and properties", pp. 1-6, Kodansha Ltd. and Gordon and Breach Science Publishers SA, Tokyo and Amsterdam (1996).
  8. D. J. Liaw, K. L. Wang, Y. C. Huang, K. R. Lee, J. Y. Lai, and C. S. Ha, "Advanced polyimide materials: Syntheses, physical properties and applications", Prog. Polym. Sci., 37, 907 (2012). https://doi.org/10.1016/j.progpolymsci.2012.02.005
  9. D. Y. Oh and S. Y. Nam, "Developmental trend of polyimide membranes for gas separation", Membr. J., 21, 307 (2011).
  10. T. Chung and X. Hu, "Effect of air-gap distance on the morphology and thermal properties of polyethersulfone hollow fibers", J. Appl. Polym. Sci., 66, 1067 (1997). https://doi.org/10.1002/(SICI)1097-4628(19971107)66:6<1067::AID-APP7>3.0.CO;2-G
  11. S. S. Kim and D. R. Lloyd, "Thermodynamics of polymer/diluent systems for thermally induced phase separation: 1. Determination of equation of state parameters", Polymer, 33, 1026 (1992). https://doi.org/10.1016/0032-3861(92)90019-S
  12. S. Choi, S. Park, B. Seo, K. W. Lee, S. T. Nam, and M. Han, "Effect of propionic acid additive on preparation of phase inversion polysulfone membrane", Membr. J., 18, 317 (2008).
  13. J. H. Hildebrand, J. M. Prausnitz, and R. L. Scott, Regulated and Related Solutions, Van Nostrand Reinhold Co., New York (1970).
  14. J. W. Rhim, "The relationship between the permeation rate and the solubility parameter for polyethylene-n-hexane-benzene system in pervaporation", Membr. J., 3, 136 (1993).
  15. J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, and D. R. Bloch, "Polymer handbook", pp. 675-711, Wiley New York, NY (1999).
  16. K. Adamska and A. Voelkel, "Hansen solubility parameters for polyethylene glycols by inverse gas chromatography", J. Chromatogr. A, 1132, 260 (2006). https://doi.org/10.1016/j.chroma.2006.07.066
  17. Y. Park, K. H. Lee, J. Yim, and J. Travas-Sejdic, "Controlling solvent diffusivity via architecture of nanopore structures in porous low-k films", Microporous Mesoporous Mat., 142, 91 (2011). https://doi.org/10.1016/j.micromeso.2010.11.020
  18. K. H. Song and K. R. Lee, "Prediction of affinity between membrane and esters using solubility parameter", Membr. J., 24, 484 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.484
  19. D. Shamiryan, M. Baklanov, P. Lyons, S. Beckx, W. Boullart, and K. Maex, "Diffusion of solvents in thin porous films", Colloid Surf. A-Physicochem. Eng. Asp., 300, 111 (2007). https://doi.org/10.1016/j.colsurfa.2006.10.055
  20. M. Mulder, "Basic principles of membrane technology", pp. 123-132, Kluwer Academic Publishers, London (1996).
  21. L. Xu, C. Zhang, M. Rungta, W. Qiu, J. Liu, and W. J. Koros, "Formation of defect-free 6FDA-DAM asymmetric hollow fiber membranes for gas separations", J. Membr. Sci., 459, 223 (2014). https://doi.org/10.1016/j.memsci.2014.02.023