DOI QR코드

DOI QR Code

Serine Proteases of Parasitic Helminths

  • Yang, Yong (State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences) ;
  • Wen, Yun jun (State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences) ;
  • Cai, Ya Nan (College of Animal Science and Technology, Jilin Agricultural University) ;
  • Vallee, Isabelle (ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory) ;
  • Boireau, Pascal (ANSES, ENVA, UPVM, PRES Paris Est, JRU BIPAR, Animal Health Laboratory) ;
  • Liu, Ming Yuan (Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, Jilin University) ;
  • Cheng, Shi Peng (State Key Laboratory for Molecular Biology of Special Economic Animals, Institute of Special Economic Animal and Plant Sciences, Chinese Academy of Agricultural Sciences)
  • Received : 2014.03.27
  • Accepted : 2014.10.23
  • Published : 2015.02.28

Abstract

Serine proteases form one of the most important families of enzymes and perform significant functions in a broad range of biological processes, such as intra- and extracellular protein metabolism, digestion, blood coagulation, regulation of development, and fertilization. A number of serine proteases have been identified in parasitic helminths that have putative roles in parasite development and nutrition, host tissues and cell invasion, anticoagulation, and immune evasion. In this review, we described the serine proteases that have been identified in parasitic helminths, including nematodes (Trichinella spiralis, T. pseudospiralis, Trichuris muris, Anisakis simplex, Ascaris suum, Onchocerca volvulus, O. lienalis, Brugia malayi, Ancylostoma caninum, and Steinernema carpocapsae), cestodes (Spirometra mansoni, Echinococcus granulosus, and Schistocephalus solidus), and trematodes (Fasciola hepatica, F. gigantica, and Schistosoma mansoni). Moreover, the possible biological functions of these serine proteases in the endogenous biological phenomena of these parasites and in the host-parasite interaction were also discussed.

Keywords

References

  1. Neurath H. The versatility of proteolytic enzymes. J Cell Biochem 1986; 32: 35-49. https://doi.org/10.1002/jcb.240320105
  2. Tetley TD. New perspectives on basic mechanisms in lung disease. 6. Proteinase imbalance: its role in lung disease. Thorax 1993; 48: 560-565. https://doi.org/10.1136/thx.48.5.560
  3. Dzik JM. Molecules released by helminth parasites involved in host colonization. Acta Biochim Pol 2006; 53: 33-64.
  4. Hedstrom L. Serine protease mechanism and specificity. Chem Rev 2002; 102: 4501-4524. https://doi.org/10.1021/cr000033x
  5. Ros-Moreno RM, Vazquez-Lopez C, Gimenez-Pardo C, de Armas-Serra C, Rodriguez-Caabeiro F. A study of proteases throughout the life cycle of Trichinella spiralis. Folia Parasitol (Praha) 2000; 47: 49-54. https://doi.org/10.14411/fp.2000.009
  6. Todorova VK, Stoyanov DI. Partial characterization of serine proteinases secreted by adult Trichinella spiralis. Parasitol Res 2000; 86: 684-687. https://doi.org/10.1007/PL00008552
  7. Romaris F, North SJ, Gagliardo LF, Butcher BA, Ghosh K, Beiting DP, Panico M, Arasu P, Dell A, Morris HR, Appleton JA. A putative serine protease among the excretory-secretory glycoproteins of L1 Trichinella spiralis. Mol Biochem Parasitol 2002; 122: 149-160. https://doi.org/10.1016/S0166-6851(02)00094-4
  8. Nagano I, Wu Z, Nakada T, Boonmars T, Takahashi Y. Molecular cloning and characterization of a serine proteinase gene of Trichinella spiralis. J Parasitol 2003; 89: 92-98. https://doi.org/10.1645/0022-3395(2003)089[0092:MCACOA]2.0.CO;2
  9. Wang B, Wang Z Q, Jin J, Ren HJ, Liu L N, Cui J. Cloning, expression and characterization of a Trichinella spiralis serine protease gene encoding a 35.5 kDa protein. Exp Parasitol 2013; 134: 148-154. https://doi.org/10.1016/j.exppara.2013.03.004
  10. Cwiklinski K, Meskill D, Robinson MW, Pozio E, Appleton JA, Connolly B. Cloning and analysis of a Trichinella pseudospiralis muscle larva secreted serine protease gene. Vet Parasitol 2009; 159: 268-271. https://doi.org/10.1016/j.vetpar.2008.10.036
  11. Trap C, Fu B, Le Guerhier F, Liu M, Le Rhun D, Romand T, Perret C, Blaga R, Boireau P. Cloning and analysis of a cDNA encoding a putative serine protease comprising two trypsin-like domains of Trichinella spiralis. Parasitol Res 2006; 98: 288-294. https://doi.org/10.1007/s00436-005-0075-x
  12. Liu MY, Wang XL, Fu BQ, Li CY, Wu XP, Le Rhun D, Chen QJ, Boireau P. Identification of stage-specifically expressed genes of Trichinella spiralis by suppression subtractive hybridization. Parasitology 2007; 134: 1443-1455. https://doi.org/10.1017/S0031182007002855
  13. Boireau P, Liu M, Fu B, Le Rhun D, Bahuon C, Vallee I, Le Guerhier F, Bello RH, Wu X. Polpeptides recognized by anti-Trichinella antibodies, and uses thereof. 2007 (WO Patent 2,007,090,960).
  14. Drake LJ, Bianco AE, Bundy DA, Ashall F. Characterization of peptidases of adult Trichuris muris. Parasitology 1994; 109: 623-630. https://doi.org/10.1017/S0031182000076502
  15. Hasnain SZ, McGuckin MA, Grencis RK, Thornton DJ. Serine protease (s) secreted by the nematode Trichuris muris degrade the mucus barrier. PLoS Negl Trop Dis 2012; 6: e1856. https://doi.org/10.1371/journal.pntd.0001856
  16. Sakanari JA, McKerrow JH. Identification of the secreted neutral proteases from Anisakis simplex. J Parasitol 1990; 76: 625-630. https://doi.org/10.2307/3282971
  17. Sakanari JA, Staunton CE, Eakin AE, Craik CS , McKerrow JH. Serine proteases from nematode and protozoan parasites: isolation of sequence homologs using generic molecular probes. Proc Natl Acad Sci USA 1989; 86: 4863-4867. https://doi.org/10.1073/pnas.86.13.4863
  18. Morris SR, Sakanari JA. Characterization of the serine protease and serine protease inhibitor from the tissue-penetrating nematode Anisakis simplex. J Biol Chem 1994; 269: 27650-27656.
  19. Zhao Y, Sun W, Zhang P, Chi H, Zhang MJ, Song CQ , Ma X, Shang Y, Wang B, Hu Y, Hao Z, Huhmer AF, Meng F, L'Hernault SW, He SM, Dong MQ, Miao L. Nematode sperm maturation triggered by protease involves sperm-secreted serine protease inhibitor (Serpin). Proc Natl Acad Sci USA 2012; 109: 1542-1547. https://doi.org/10.1073/pnas.1109912109
  20. Haffner A, Guilavogui AZ, Tischendorf FW, Brattig NW. Onchocerca volvulus: microfilariae secrete elastinolytic and males nonelastinolytic matrix-degrading serine and metalloproteases. Exp Parasitol 1998; 90: 26-33. https://doi.org/10.1006/expr.1998.4313
  21. Lackey A, James ER, Sakanari JA, Resnick SD, Brown M, Bianco AE, McKerrow JH. Extracellular proteases of Onchocerca. Exp Parasitol 1989; 68: 176-185. https://doi.org/10.1016/0014-4894(89)90095-7
  22. Poole CB, Jin J, McReynolds LA. Cloning and biochemical characterization of blisterase, a subtilisin-like convertase from the filarial parasite, Onchocerca volvulus. J Biol Chem 2003; 278: 36183-36190. https://doi.org/10.1074/jbc.M302601200
  23. Rees-Roberts D, Mullen LM, Gounaris K, Selkirk ME. Inactivation of the complement anaphylatoxin C5a by secreted products of parasitic nematodes. Int J Parasitol 2010; 40: 527-532. https://doi.org/10.1016/j.ijpara.2009.10.006
  24. Hotez PZ, Cerami A. Secretion of a proteolytic anticoagulant by Ancylostoma hookworms. J Exp Med 1983; 157: 1594-1603. https://doi.org/10.1084/jem.157.5.1594
  25. Toubarro D, Lucena-Robles M, Nascimento G, Santos R, Montiel R, Verissimo P, Pires E, Faro C, Coelho AV, Simoes N. Serine protease-mediated host invasion by the parasitic nematode Steinernema carpocapsae. J Biol Chem 2010; 285: 30666-30675. https://doi.org/10.1074/jbc.M110.129346
  26. Toubarro D, Lucena-Robles M, Nascimento G, Costa G, Montiel R, Coelho AV, Simoes N. An apoptosis-inducing serine protease secreted by the entomopathogenic nematode Steinernema carpocapsae. Int J Parasitol 2009; 39: 1319-1330. https://doi.org/10.1016/j.ijpara.2009.04.013
  27. Hao YJ, Montiel R, Nascimento G, Toubarro D, Simoes N. Identification and expression analysis of the Steinernema carpocapsae elastase-like serine protease gene during the parasitic stage. Exp Parasitol 2009; 122: 51-60. https://doi.org/10.1016/j.exppara.2009.01.014
  28. Balasubramanian N, Hao YJ, Toubarro D, Nascimento G, Simoes N. Purification, biochemical and molecular analysis of a chymotrypsin protease with prophenoloxidase suppression activity from the entomopathogenic nematode Steinernema carpocapsae. Int J Parasitol 2009; 39: 975-984. https://doi.org/10.1016/j.ijpara.2009.01.012
  29. Balasubramanian N, Toubarro D, Simoes N. Biochemical study and in vitro insect immune suppression by a trypsin-like secreted protease from the nematode Steinernema carpocapsae. Parasite Immunol 2010; 32: 165-175. https://doi.org/10.1111/j.1365-3024.2009.01172.x
  30. Kong Y, Chung YB, Cho SY, Choi SH, Kang SY. Characterization of three neutral proteases of Spirometra mansoni plerocercoid. Parasitology 1994; 108: 359-368. https://doi.org/10.1017/S0031182000076204
  31. Lorenzo C, Salinas G, Brugnini A, Wernstedt C, Hellman U, Gonzalez-Sapienza, G. Echinococcus granulosus antigen 5 is closely related to proteases of the trypsin family. Biochem J 2003; 369: 191-198. https://doi.org/10.1042/bj20021402
  32. Li Y, Xu H, Chen J, Gan W, Wu W, Hu X. Gene cloning, expression, and localization of antigen 5 in the life cycle of Echinococcus granulosus. Parasitol Res 2012; 110: 2315-2323. https://doi.org/10.1007/s00436-011-2766-9
  33. Rueda A, Sifuentes C, Gilman RH, Gutierrez AH, Pina R, Chile N, Carrasco S, Larson S, Mayta H, Verastegui M, Rodriguez S. TsAg5, a Taenia solium cysticercus protein with a marginal trypsin-like activity in the diagnosis of human neurocysticercosis. Mol Biochem Parasitol 2011; 180: 115-119. https://doi.org/10.1016/j.molbiopara.2011.08.003
  34. Polzer M, Conradt U. Identification and partial characterization of the proteases from different developmental stages of Schistocephalus solidus (cestoda: Pseudophyllidae). Int J Parasitol 1994; 24: 967-973. https://doi.org/10.1016/0020-7519(94)90161-9
  35. Carmona C, McGonigle S, Dowd AJ, Smith AM, Coughlan S, McGowran E, Dalton JP. A dipeptidylpeptidase secreted by Fasciola hepatica. Parasitology 1994; 109: 113-118. https://doi.org/10.1017/S0031182000077817
  36. Mohamed SA, Fahmy AS, Mohamed TM, Hamdy SM. Proteases in egg, miracidium and adult of Fasciola gigantica. Characterization of serine and cysteine proteases from adult. Comp Biochem Physiol B Biochem Mol Biol 2005; 142: 192-200. https://doi.org/10.1016/j.cbpc.2005.07.008
  37. Newport GR, McKerrow JH, Hedstrom R, Petitt M, McGarrigle L, Barr PJ, Agabian N. Cloning of the proteinase that facilitates infection by schistosome parasites. J Biol Chem 1988; 263: 13179-13184.
  38. Dalton JP, Clough KA, Jones MK, Brindley PJ. The cysteine proteinases of Schistosoma mansoni cercariae. Parasitology 1997; 114: 105-112. https://doi.org/10.1017/S003118209600830X
  39. Salter JP, Choe Y, Albrecht H, Franklin C, Lim KC, Craik CS, McKerrow JH. Cercarial elastase is encoded by a functionally conserved gene family across multiple species of schistosomes. J Biol Chem 2002; 277: 24618-24624. https://doi.org/10.1074/jbc.M202364200
  40. Young ND, Jex AR, Li B, Liu S, Yang L, Xiong Z, Li Y, Cantacessi C, Hall RS, Xu X, Chen F, Wu X, Zerlotini A, Oliveira G, Hofmann A, Zhang G, Fang X, Kang Y, Campbell BE, Loukas A, Ranganathan S, Rollinson D, Rinaldi G, Brindley PJ, Yang H, Wang J, Wang J, Gasser RB. Whole-genome sequence of Schistosoma haematobium. Nature Genetics 2012; 44: 221-225. https://doi.org/10.1038/ng.1065
  41. Dvorak J, Mashiyama ST, Braschi S, Sajid M, Knudsen GM, Hansell E, Lim KC, Hsieh I, Bahgat M, Mackenzie B. Medzihradszky KF, Babbitt PC, Caffrey CR, McKerrow JH. Differential use of protease families for invasion by schistosome cercariae. Biochimie 2008; 90: 345-358. https://doi.org/10.1016/j.biochi.2007.08.013
  42. Zhou Y, Zheng H, Chen Y, Zhang L, Wang K, Guo J, Huang Z, Zhang B, Huang W, Jin K. Dou T, Hasegawa M, Wang L, Zhang Y, Zhou J, Tao L, Cao Z, Li Y, Vinar T, Brejova B, Brown D, Li M, Miller DJ, Blair D, Zhong Y, Chen Z, Liu F, Hu W, Wang ZQ, Zhang QH, Song HD, Chen S, Xu X, Xu B, Ju C, Huang Y, Brindley PJ, McManus DP, Feng Z, Han ZG, Lu G, Ren S, Wang Y, Gu W, Kang H, Chen J, Chen X, Chen S, Wang L, Yan J, Wang B, Lv X, Jin L, Wang B, Pu S, Zhang X, Zhang W, Hu Q, Zhu G, Wang J, Yu J, Wang J, Yang H, Ning Z, Beriman M, Wei CL, Ruan Y, Zhao G, Wang S, Liu F, Zhou Y, Wang ZQ, Lu G, Zheng H, Brindley PJ, McManus DP, Blair D, Zhang QH, Zhong Y, Wang S, Han ZG, Chen Z, Wang S, Han ZG, Chen Z. The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 2009; 460: 345-351. https://doi.org/10.1038/nature08140
  43. Ingram JR, Rafi SB, Eroy-Reveles AA, Ray M, Lambeth L, Hsieh I, Ruelas D, Lim KC, Sakanari J, Craik CS, Jacobson MP, McKerrow JH. Investigation of the proteolytic functions of an expanded cercarial elastase gene family in Schistosoma mansoni. PLoS Negl Trop Dis 2012; 6: e1589. https://doi.org/10.1371/journal.pntd.0001589
  44. Hagan P, Blumenthal UJ, Dunn D, Simpson AJ, Wilkins HA. Human IgE, IgG4 and resistance to reinfection with Schistosoma haematobium. Nature 1991; 349: 243-245. https://doi.org/10.1038/349243a0
  45. Zhang P, Mutapi F. IgE: a key antibody in Schistosoma infection. Electronic J Biol 2006; 2: 11-14.
  46. Pleass RJ, Kusel JR, Woof JM. Cleavage of human IgE mediated by Schistosoma mansoni. Int Arch Allergy Immunol 2000; 121: 194-204. https://doi.org/10.1159/000024317
  47. Aslam A, Quinn P, McIntosh RS, Shi J, Ghumra A, McKerrow JH, Bunting KA, Dunne DW, Doenhoff MJ, Morrison SL, Zhang K, Pleass RJ. Proteases from Schistosoma mansoni cercariae cleave IgE at solvent exposed interdomain regions. Mol Immunol 2008; 45: 567-574. https://doi.org/10.1016/j.molimm.2007.05.021

Cited by

  1. Carbonic anhydrase enzyme as a potential therapeutic target for experimental trichinellosis vol.115, pp.6, 2015, https://doi.org/10.1007/s00436-016-4982-9
  2. Integrated Activity and Genetic Profiling of Secreted Peptidases in Cryptococcus neoformans Reveals an Aspartyl Peptidase Required for Low pH Survival and Virulence vol.12, pp.12, 2015, https://doi.org/10.1371/journal.ppat.1006051
  3. Proteolytic enzymes and their inhibitors in cestodes vol.7, pp.2, 2017, https://doi.org/10.1134/s2079086417020049
  4. Proteomic Analysis of Trichinella spiralis Adult Worm Excretory-Secretory Proteins Recognized by Sera of Patients with Early Trichinellosis vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.00986
  5. Recent advances in proteomic applications for schistosomiasis research: potential clinical impact vol.14, pp.2, 2017, https://doi.org/10.1080/14789450.2017.1271327
  6. A critical review on serine protease: Key immune manipulator and pathology mediator vol.45, pp.6, 2017, https://doi.org/10.1016/j.aller.2016.10.011
  7. Immunoproteomic analysis of the excretory-secretory products of Trichinella pseudospiralis adult worms and newborn larvae vol.10, pp.1, 2017, https://doi.org/10.1186/s13071-017-2522-9
  8. SmSP2: A serine protease secreted by the blood fluke pathogen Schistosoma mansoni with anti-hemostatic properties vol.12, pp.4, 2015, https://doi.org/10.1371/journal.pntd.0006446
  9. Silent Witness: Dual-Species Transcriptomics Reveals Epithelial Immunological Quiescence to Helminth Larval Encounter and Fostered Larval Development vol.9, pp.None, 2018, https://doi.org/10.3389/fimmu.2018.01868
  10. ВЛИЯНИЕ ЗАРАЖЕНИЯ ЦЕСТОДОЙ PROTEOCEPHALUS TORULOSUS BATSCH, 1786 НА АКТИВНОСТЬ ФЕРМЕНТОВ В КИШЕЧНИКЕ СИНЦА (BALLERUS BALLERUS L.), "П vol.4, pp.None, 2015, https://doi.org/10.7868/s0031184718040042
  11. Characterization of a Trichinella spiralis putative serine protease. Study of its potential as sero-diagnostic tool vol.12, pp.5, 2015, https://doi.org/10.1371/journal.pntd.0006485
  12. Proteases and protease inhibitors in infectious diseases vol.38, pp.4, 2015, https://doi.org/10.1002/med.21475
  13. Activity profiling of peptidases in Angiostrongylus costaricensis first-stage larvae and adult worms vol.12, pp.10, 2015, https://doi.org/10.1371/journal.pntd.0006923
  14. Plasminogen-binding proteins as an evasion mechanism of the host’s innate immunity in infectious diseases vol.38, pp.5, 2015, https://doi.org/10.1042/bsr20180705
  15. Editing the genome of Aphanomyces invadans using CRISPR/Cas9 vol.11, pp.1, 2015, https://doi.org/10.1186/s13071-018-3134-8
  16. Molecular characterization of a 31 kDa protein from Trichinella spiralis and its induced immune protection in BALB/c mice vol.11, pp.1, 2015, https://doi.org/10.1186/s13071-018-3198-5
  17. Molecular characterization of a putative serine protease from Trichinella spiralis and its elicited immune protection vol.49, pp.None, 2015, https://doi.org/10.1186/s13567-018-0555-5
  18. Protective immunity against Trichinella spiralis in mice elicited by oral vaccination with attenuated Salmonella -delivered TsSP1.2 DNA vol.49, pp.None, 2018, https://doi.org/10.1186/s13567-018-0582-2
  19. Screening and verification for proteins that interact with leucine aminopeptidase of Taenia pisiformis using a yeast two-hybrid system vol.118, pp.12, 2015, https://doi.org/10.1007/s00436-019-06510-8
  20. Complex insight on microanatomy of larval “human broad tapeworm” Dibothriocephalus latus (Cestoda: Diphyllobothriidea) vol.12, pp.1, 2019, https://doi.org/10.1186/s13071-019-3664-8
  21. Host Immunity and Inflammation to Pulmonary Helminth Infections vol.11, pp.None, 2015, https://doi.org/10.3389/fimmu.2020.594520
  22. Comparative genomics and transcriptomics of 4 Paragonimus species provide insights into lung fluke parasitism and pathogenesis vol.9, pp.7, 2015, https://doi.org/10.1093/gigascience/giaa073
  23. Anisakis simplex products impair intestinal epithelial barrier function and occludin and zonula occludens-1 localisation in differentiated Caco-2 cells vol.14, pp.7, 2015, https://doi.org/10.1371/journal.pntd.0008462
  24. Effect of recombinant serine protease from adult stage of Trichinella spiralis on TNBS-induced experimental colitis in mice vol.86, pp.None, 2015, https://doi.org/10.1016/j.intimp.2020.106699
  25. Activity of serine proteases from Fasciola hepatica eggs in relation to pH and temperature vol.23, pp.3, 2015, https://doi.org/10.15547/bjvm.2218
  26. Proteases and pseudoproteases in parasitic arthropods of clinical importance vol.287, pp.19, 2015, https://doi.org/10.1111/febs.15546
  27. Molecular cloning and characterization of a novel peptidase from Trichinella spiralis and protective immunity elicited by the peptidase in BALB/c mice vol.51, pp.1, 2015, https://doi.org/10.1186/s13567-020-00838-1
  28. Molecular characterization of a Trichinella spiralis serine proteinase vol.51, pp.1, 2020, https://doi.org/10.1186/s13567-020-00847-0
  29. Disruption of Epithelial Barrier of Caco-2 Cell Monolayers by Excretory Secretory Products of Trichinella spiralis Might Be Related to Serine Protease vol.12, pp.None, 2015, https://doi.org/10.3389/fmicb.2021.634185
  30. Bioguided isolation of N-malonyl-(+)-tryptophan from the fruit of Pithecellobium dulce (Roxb.) Benth. that showed high activity against Hymenolepis nana vol.35, pp.4, 2021, https://doi.org/10.1080/14786419.2019.1590709
  31. The immune protection induced by a serine protease from the Trichinella spiralis adult against Trichinella spiralis infection in pigs vol.15, pp.5, 2015, https://doi.org/10.1371/journal.pntd.0009408
  32. Spatial expression pattern of serine proteases in the blood fluke Schistosoma mansoni determined by fluorescence RNA in situ hybridization vol.14, pp.1, 2015, https://doi.org/10.1186/s13071-021-04773-8
  33. Oral immunization with attenuated Salmonella encoding an elastase elicits protective immunity against Trichinella spiralis infection vol.226, pp.None, 2022, https://doi.org/10.1016/j.actatropica.2021.106263