DOI QR코드

DOI QR Code

Measurement and Prediction of Autoignition Temperature(AIT) of n-Decane+Ethylbenzene System

노말데칸과 에틸벤젠 계의 최소자연발화온도 측정 및 예측

  • Lee, Jae-Hwa (Dept. of Fire and Disaster Prevention Engineering, Graduate School, Semyung University) ;
  • Kim, Gui-Ju (Dept. of Fire and Disaster Prevention Engineering, Graduate School, Semyung University) ;
  • Hong, Soon-Kang (Dept. of Fire Service Adminstration, Chodang University) ;
  • Ha, Dong-Myeong (Dept. of Occupational Health and Safety Engineering, Semyung University)
  • 이재화 (세명대학교 대학원 소방방재공학과) ;
  • 김귀주 (세명대학교 대학원 소방방재공학과) ;
  • 홍순강 (초당대학교 소방행정학과) ;
  • 하동명 (세명대학교 보건안전공학과)
  • Received : 2015.08.16
  • Accepted : 2015.10.22
  • Published : 2015.10.30

Abstract

The autoignition temperature (AIT) of a material is the lowest temperature at which the material will spontaneously ignite. The AIT is important index for the safe handling of flammable liquids which constitute the solvent mixtures. This study measured the AITs of n-decane+ethylbenzene system by using ASTM E659 apparatus. The AITs of n-decane and ethylbenzene which constituted binary system were $210^{\circ}C$ and $430^{\circ}C$, respectively. The experimental AITs of n-decane+ethylbenzene mixture were a good agreement with the calculated AITs by the proposed equations with about $11^{\circ}C$ A.A.D.(average absolute deviation).

최소자연발화온도는 가연성물질이 주위의 열에 의해 스스로 발화하는 최저온도이다. 최소자연발화온도는 유기혼합물중 가연성 액체혼합물의 안전한 취급을 위해서 중요한 지표가 된다. 본 연구에서는 ASTM E659 장치를 이용하여 가연성 혼합물인 노말데칸과 에틸벤젠 계의 최소자연발화온도를 측정하였다. 이성분계를 구성하는 노말데칸과 에틸벤젠의 최소자연발화온도는 각 각 $210^{\circ}C$, $430^{\circ}C$로 측정되었다. 그리고 측정된 노말데칸과 에틸벤젠 혼합물의 최소자연발화온도는 제시된 식에 의한 예측값과 약 $11^{\circ}C$평균절대오차에서 일치하였다.

Keywords

References

  1. Crowl, D.A. and J.F. Louvar, Chemical Process Safety Fundamentals with Application, 2nd ed., Pearson Education Inc., (2002)
  2. Ha, D.M., "The Study on Measurement and Prediction of Combustion Properties fot Aniline", J. of the Korean Institute of Gas, 28(4), 44-505, (2014)
  3. Zabetakis, M.G., A.L. Furno and G.W. Jones, "Minimum Spontaneous Ignition Temperature of Combustibles in Air", Industrial and Engineering Chemistry, 46(10), 2173-2178, (1954) https://doi.org/10.1021/ie50538a047
  4. Vanhove, G., G. Petit and R. Minetti, "Experimental Study of the Kinetic Interaction in the Low-temperature Autoignition of Hydrocarbon Binary mixtures and a Surrogate Fuel" Combustion and Flame, 145, 521-532, (2006) https://doi.org/10.1016/j.combustflame.2006.01.001
  5. Ha, D.M., "Prediction of Autoignition Temperature of n-Propanol and n-Octane Mixture", Journal of the Korean Institute of Gas, 17(2), 21-27, (2013) https://doi.org/10.7842/kigas.2013.17.2.21
  6. Ha, D.M. "Prediction of Autoignition Temperature of n-Decane and sec-Butanol Mixture", Journal of the Korean Institute of Fire Sci. & Eng., 26(3), 85-90, (2012)
  7. Goldfrab, J. and A. Zinoviev, "A Study of Delay Spontaneous Insulation Fires", Physics Letter, A311, 491-500, (2003)
  8. Box. G.E.P. and N.R. Draper, Empirical Model-Building and Response Surface, John Wiley and Sons, Inc., (1987)
  9. Kanury, A.M., SFPE Handbook of Fire Protection Engineering : Ignition of Liquid Fuels, 2nd ed., SFPE, (1995)
  10. Semenov, N.N., Some Problems in Chemical Kinetics and Reactivity, Vol. 2, Princeton University Press, Princeton, N.J, (1959)
  11. NFPA, Fire Hazard Properties of Flammable Liquid, Gases, and Volatile Solids, NFPA 325M, NFPA, (1991)
  12. Lenga, R.E. and K.L. Votoupal, The Sigma Aldrich Library of Regulatory and Safety Data, Volume I-III, Sigma Chemical Company and Aldrich Chemical Company Inc., (1993)
  13. Hilado, C.J. and S.W. Clark, "Autoignition Temperature of Organic Chemicals", Chemical Engineering, 4, 75-80, (1972)
  14. Babrauskas, V., Ignition Handbook, Fire Science Publishers, SFPE, (2003)
  15. Jackson, J.L., "Spontaneous Ignition Temperature - Commercial Fluids and Pure Hydrocarbons-", Industrial and Engineering Chemistry, 43(12), 2869-2870. (1951) https://doi.org/10.1021/ie50504a058
  16. Scott, G.S., G.W. Jones and F.E. Scott, "Determination of Ignition Temperature of Combustible Liquids and Gases", Analytical Chemistry, 20(3), 238-241, (1948) https://doi.org/10.1021/ac60015a015