DOI QR코드

DOI QR Code

Assessment for the Utility of Treatment Plan QA System according to Dosimetric Leaf Gap in Multileaf Collimator

다엽콜리메이터의 선량학적엽간격에 따른 치료계획 정도관리시스템의 효용성 평가

  • Lee, Soon Sung (Radiological & Medico-Oncological Sciences, University of Science and Technology) ;
  • Choi, Sang Hyoun (Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences) ;
  • Min, Chul Kee (Department of Radiation Oncology, Soon Chun Hyang University Hospital Cheonan) ;
  • Kim, Woo Chul (Department of Radiation Oncology, Soon Chun Hyang University Hospital Cheonan) ;
  • Ji, Young Hoon (Radiological & Medico-Oncological Sciences, University of Science and Technology) ;
  • Park, Seungwoo (Research Center for Radiotherapy, Korea Institute of Radiological and Medical Sciences) ;
  • Jung, Haijo (Radiological & Medico-Oncological Sciences, University of Science and Technology) ;
  • Kim, Mi-Sook (Radiological & Medico-Oncological Sciences, University of Science and Technology) ;
  • Yoo, Hyung Jun (Department of Radiation Oncology, Korea Institute of Radiological and Medical Sciences) ;
  • Kim, Kum Bae (Radiological & Medico-Oncological Sciences, University of Science and Technology)
  • 이순성 (과학기술연합대학원대학교 방사선종양의과학) ;
  • 최상현 (한국원자력의학원 방사선치료연구부) ;
  • 민철기 (순천향대학교 천안병원 방사선종양학과) ;
  • 김우철 (순천향대학교 천안병원 방사선종양학과) ;
  • 지영훈 (과학기술연합대학원대학교 방사선종양의과학) ;
  • 박승우 (한국원자력의학원 방사선치료연구부) ;
  • 정해조 (과학기술연합대학원대학교 방사선종양의과학) ;
  • 김미숙 (과학기술연합대학원대학교 방사선종양의과학) ;
  • 유형준 (한국원자력의학원 방사선종양학과) ;
  • 김금배 (과학기술연합대학원대학교 방사선종양의과학)
  • Received : 2015.08.27
  • Accepted : 2015.09.21
  • Published : 2015.09.30

Abstract

For evaluating the treatment planning accurately, the quality assurance for treatment planning is recommended when patients were treated with IMRT which is complex and delicate. To realize this purpose, treatment plan quality assurance software can be used to verify the delivered dose accurately before and after of treatment. The purpose of this study is to evaluate the accuracy of treatment plan quality assurance software for each IMRT plan according to MLC DLG (dosimetric leaf gap). Novalis Tx with a built-in HD120 MLC was used in this study to acquire the MLC dynalog file be imported in MobiusFx. To establish IMRT plan, Eclipse RTP system was used and target and organ structures (multi-target, mock prostate, mock head/neck, C-shape case) were contoured in I'mRT phantom. To verify the difference of dose distribution according to DLG, MLC dynalog files were imported to MobiusFx software and changed the DLG (0.5, 0.7, 1.0, 1.3, 1.6 mm) values in MobiusFx. For evaluation dose, dose distribution was evaluated by using 3D gamma index for the gamma criteria 3% and distance to agreement 3 mm, and the point dose was acquired by using the CC13 ionization chamber in isocenter of I'mRT phantom. In the result for point dose, the mock head/neck and multi-target had difference about 4% and 3% in DLG 0.5 and 0.7 mm respectively, and the other DLGs had difference less than 3%. The gamma index passing-rate of mock head/neck were below 81% for PTV and cord, and multi-target were below 30% for center and superior target in DLGs 0.5, 0.7 mm, however, inferior target of multi-target case and parotid of mock head/neck case had 100.0% passing rate in all DLGs. The point dose of mock prostate showed difference below 3.0% in all DLGs, however, the passing rate of PTV were below 95% in 0.5, 0.7 mm DLGs, and the other DLGs were above 98%. The rectum and bladder had 100.0% passing rate in all DLGs. As the difference of point dose in C-shape were 3~9% except for 1.3 mm DLG, the passing rate of PTV in 1.0 1.3 mm were 96.7, 93.0% respectively. However, passing rate of the other DLGs were below 86% and core was 100.0% passing rate in all DLGs. In this study, we verified that the accuracy of treatment planning QA system can be affected by DLG values. For precise quality assurance for treatment technique using the MLC motion like IMRT and VMAT, we should use appropriate DLG value in linear accelerator and RTP system.

세기조절방사선치료(IMRT)는 복잡하고 정교한 방사선치료 기법을 이용한 환자 치료 시 치료계획의 정확성을 평가하기 위해 첫 치료 시작 전 품질관리를 권고하고 있다. 이 목적 실현을 위해 최근 상용화된 품질관리 소프트웨어를 이용하면 치료 전후의 정확한 방사선량의 전달을 확인할 수 있다. 이에 본 연구에서는 품질관리 시스템 내에 MLC의 선량학적엽간격(DLG)의 변화에 따른 IMRT 치료계획 경우별 계산 결과의 분석을 통해 그 효용성을 평가하고자 한다. MobiusFx에 입력할 MLC 다이나로그 파일(Dynamic MLC Log File)을 획득하기 위하여 HD120 MLC가 장착된 Novalis Tx를 이용하였다. IMRT 치료계획을 수립하기 위해 Eclipse 치료계획시스템을 사용하였으며, IBA사의 I'mRT 팬톰영상에 표적 및 장기 윤곽(다중표적, 전립선, 두경부, C-모양)을 묘사하였다. DLG에 따른 선량분포의 변화를 확인하기 위해서 MLC 다이나로그 파일을 MobiusFX 시스템에 입력하고 각 경우마다 0.5, 0.7, 1.0, 1.3, 1.6 mm로 DLG를 변화시켜 선량계산의 차이를 평가하였다. 선량평가는 허용범위가 3%/3 mm인 3차원 감마지표의 통과율과 DVH 그리고 CC13 전리함에 대한 점선량을 통해 분석하였다. MobiusFx에서 4가지의 경우에 대해 각 DLG 마다의 선량분포를 비교 분석한 결과, 다중표적과 두경부는 DLG가 0.5와 0.7 mm에서 3~5%, 1.0~1.6 mm에서 3% 미만의 선량차이를 보였다. 감마 지수 통과율에서도 0.7 mm 이하의 DLG에서 다중표적 경우의 중앙표적과 상위표적은 30% 미만, PTV와 척수는 81% 미만이었으며, 다른 DLG에서는 95% 이상의 통과율을 보였다. 하위표적과 귀밑샘은 모든 DLG에서 100.0%이었다. 전립선에서 점선량은 모든 DLG에서 3% 미만의 차이를 보였으나 PTV에서 DLG 0.7 mm 이하와 1.0 mm 이상에서는 각각 95% 미만과 98% 이상의 통과율을 보였다. 직장과 방광은 모든 DLG에서 100.0%로 나타났다. C-모양에서 점선량은 1.3 mm를 제외한 모든 DLG에서 3~9%의 차이를 보이며 PTV는 1.0과 1.3 mm의 DLG에서 각각 96.7, 93.0%의 통과율을 보였으나 다른 DLG에서는 86% 미만이었다. 코어에서는 모든 DLG에서 100.0%였다. 본 연구에서는 치료계획 품질관리 시스템에서 DLG 적용 값의 차이에 따라 품질관리의 정확성에 유의미한 영향을 미치는 것으로 확인되었다. 그러므로 IMRT, VMAT 등 MLC의 움직임을 이용한 방사선치료법의 경우 정확한 품질관리를 위해서는 사용하고 있는 치료장비 및 치료계획시스템에 맞는 적합한 DLG 값을 상호 일치시켜 사용해야 할 것으로 판단된다.

Keywords

References

  1. Lee L, Le QT, Xing L: Retrospective IMRT dose reconstruction based on cone-beam CT and MLC log-file. Int J Radiat Oncol Biol Phys 70:634-644 (2008) https://doi.org/10.1016/j.ijrobp.2007.09.054
  2. Han YY: Review on the Pre-treatment Quality assurance for intensity modulated radiation therapy. Progress in MEDICAL PHYSICS 24(4):213-219 (2013) https://doi.org/10.14316/pmp.2013.24.4.213
  3. Park SY, Park YK, Park JM et al: MU Fluence reconstruction based-on delivered leaf position for IMRT quality assurance. JOURNAL OF RADIATION PROTECTION 38(1):28-34 (2011)
  4. Graves MN, Thompson AV, Martel MK et al: Calibration and quality assurance for rounded leaf-end MLC systems. Med Phys 28(11):2227-2233 (2001) https://doi.org/10.1118/1.1413517
  5. Lee JW, Choi KS, Hong S et al: Effects of static dosimetric leaf gap on MLC-based small beam dose distribution for intensity- modulated radiosurgery. J Appl Clin Med Phys 8(4): 54-65 (2007) https://doi.org/10.1120/jacmp.v8i4.2397
  6. Kielar KN, Mok E, Hsu A et al: Verification of dosimetric accuracy on the TrueBeam STx: Rounded leaf effect of the high definition MLC. Med Phys 39(10):6360-6371 (2012) https://doi.org/10.1118/1.4752444
  7. Varian Medical Systems: dosimetric leaf gap Measurement Guide.
  8. Klein EE, Hanley J, Bayouth J et al: Task Group 142 report: Quality assurance of medical accelerators. Med Phys 36(9): 4197-4212 (2009) https://doi.org/10.1118/1.3190392
  9. Rangel A and Dunscombe P: Tolerances on MLC leaf position accuracy for IMRT delivery with a dynamic MLC. Med Phys 36(7): 3304-3309 (2009) https://doi.org/10.1118/1.3134244
  10. Ezzell GA, Buumeister JW, Dogan N et al: IMRT commissioning: multiple institution planning and dosimetry comparisons, a report from AAPM Task Group 119. Med Phys 36: 5359-5373 (2009) https://doi.org/10.1118/1.3238104
  11. Fontenot JD: Evaluation of a novel secondary check tool for intensity modulated radiotherapy treatment planning. J Appl Clin Med Phys 15(5):207-215 (2014) https://doi.org/10.1120/jacmp.v15i5.4990
  12. Mei X, Nygren I, Villarreal-Barajas JE: On the use of the MLC dosimetric leaf gap as a quality control tool for accurate dynamic IMRT delivery, Med Phys, 38(4):2246-2255 (2011) https://doi.org/10.1118/1.3567148
  13. Kayla NK, Ed M, Annie H et al: Verification of dosimetric accuracy on the TrueBeam STx_Rounded leaf effect of the high definition MLC, Med Phys, 39(10):6360-6370 (2012) https://doi.org/10.1118/1.4752444
  14. LoSasso T, Chui CS, Ling C: Physical and dosimetric aspects of a multileaf collimation system used in the dynamic mode for implementing intensity modulated radiotherapy, Med Phys ,25(10):1919-1927 (1998) https://doi.org/10.1118/1.598381
  15. Zhen H, Nelms BE, Tome WA et al: Moving from gamma passing rates to patient DVH-based QA metrics in pretreatment dose QA, Med Phys 38(10):5447-5489 (2011)