DOI QR코드

DOI QR Code

Fermentation Characteristics and Microbial Diversity of Tropical Grass-legumes Silages

  • Ridwan, Roni (Study Program of Microbiology, Graduate School of Bogor Agricultural University, Campus IPB Darmaga Bogor) ;
  • Rusmana, Iman (Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor Agricultural University, Campus IPB Darmaga Bogor) ;
  • Widyastuti, Yantyati (Research Center for Biotechnology, Indonesian Institute of Sciences) ;
  • Wiryawan, Komang G. (Department of Animal Nutrition and Feed Technology, Faculty of Animal Sciences, Bogor Agricultural University, Campus IPB Darmaga Bogor) ;
  • Prasetya, Bambang (Research Center for Biotechnology, Indonesian Institute of Sciences) ;
  • Sakamoto, Mitsuo (Microbe Division/ Japan Collection of Microorganisms RIKEN BioResource Center) ;
  • Ohkuma, Moriya (Microbe Division/ Japan Collection of Microorganisms RIKEN BioResource Center)
  • Received : 2014.08.15
  • Accepted : 2014.11.06
  • Published : 2015.04.01

Abstract

Calliandra calothyrsus preserved in silage is an alternative method for improving the crude protein content of feeds for sustainable ruminant production. The aim of this research was to evaluate the quality of silage which contained different levels of C. calothyrsus by examining the fermentation characteristics and microbial diversity. Silage was made in a completely randomized design consisting of five treatments with three replications i.e.: R0, Pennisetum purpureum 100%; R1, P. purpureum 75%+C. calothyrsus 25%;, R2, P. purpureum 50%+C. calothyrsus 50%; R3, P. purpureum 25%+C. calothyrsus 75%; and R4, C. calothyrsus 100%. All silages were prepared using plastic jar silos (600 g) and incubated at room temperature for 30 days. Silages were analyzed for fermentation characteristics and microbial diversity. Increased levels of C. calothyrsus in silage had a significant effect (p<0.01) on the fermentation characteristics. The microbial diversity index decreased and activity was inhibited with increasing levels of C. calothyrsus. The microbial community indicated that there was a population of Lactobacillus plantarum, L. casei, L. brevis, Lactococcus lactis, Chryseobacterium sp., and uncultured bacteria. The result confirmed that silage with a combination of grass and C. calothyrsus had good fermentation characteristics and microbial communities were dominated by L. plantarum.

Keywords

References

  1. AOAC. 1997. Official Methods of Analysis. Association of Official Analytical Chemists, Arlington, VA, USA.
  2. Arriola, K. G., S. C. Kim, and A. T. Adesogan. 2011. Effect of applying inoculants with heterolactic or homolactic and heterolactic bacteria on the fermentation and quality of corn silage. J. Dairy Sci. 94:1511-1516. https://doi.org/10.3168/jds.2010-3807
  3. Blackwood, C. B., T. Marsh, S. H. Kim, and E. A. Paul. 2003. Terminal restriction fragment length polymorphism data analysis for quantitative comparison of microbial communities. Appl. Environ. Microbiol. 69:926-932. https://doi.org/10.1128/AEM.69.2.926-932.2003
  4. Bodas, R., N. Prieto, R. Garcia-Gonzalez, S. Andres, F. J. Giraldez, and S. Lopez. 2012. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 176:78-93. https://doi.org/10.1016/j.anifeedsci.2012.07.010
  5. Cappuccino, J. G. and N. Sherman. 2001. Microbiology; a laboratory manual. 6th Ed. State University of New York, Rockland Community College, NY, USA.
  6. Castro-Montoya, J. M., H. P. S. Makkar, and K. Becker. 2011. Chemical composition of rumen microbial fraction and fermentation parameters as affected by tannins and saponins using an in vitro rumen fermentation system. Can. J. Anim. Sci. 91:433-448. https://doi.org/10.4141/cjas2010-028
  7. Cole, J. R., Q. Wang, E. Cardenas, J. Fish, B. Chai, R. J. Farris, A. S. Kulam-Syed-Mohideen, D. M. McGarrell, T. Marsh, G. M. Garrity, and J. M. Tiedje. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucl. Acids Res. 37:D141-145.
  8. Deaville, E. R., D. I. Givens, and I. Mueller-Harvey. 2010. Chestnut and mimosa tannin silages: Effects in sheep differ for apparent digestibility, nitrogen utilisation and losses. Anim. Feed Sci. Technol. 157:129-138. https://doi.org/10.1016/j.anifeedsci.2010.02.007
  9. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-353. https://doi.org/10.1021/ac60111a017
  10. Gomez-Vazquez, A., J. M. Pinos-Rodriguez, J. C. Garcia-Lopez, E. de la Cruz-Lazaro, C. Luna-Palomera, and R. Sanchez-Hernandez. 2011. Nutritional value of sugarcane silage enriched with corn grain, urea, and minerals as feed supplement on growth performance of beef steers grazing stargrass. Trop. Anim. Health Prod. 43:215-220. https://doi.org/10.1007/s11250-010-9678-z
  11. Hess, H. D., T. T. Tiemann, F. Noto, S. Franzel, C. E. Lascano, and M. Kreuzer. 2006. The effects of cultivation site on forage quality of Calliandra calothyrsus var. Patulul. Agroforest. Syst. 68:209-220. https://doi.org/10.1007/s10457-006-9010-0
  12. Iwamoto, K., H. Tsuruta, Y. Nishitaini, and R. Osawa. 2008. Identification and cloning of a gene encoding tannase (tannin acylhydrolase) from Lactobacillus plantarum ATCC 14917T. Syst. Appl. Microbiol. 31:269-277. https://doi.org/10.1016/j.syapm.2008.05.004
  13. Jayanegara, A., E. Wina, C. R. Soliva, S. Marquardt, M. Kreuzer, and F. Leiber. 2011a. Dependence of forage quality and methanogenic potential of tropical plants on their phenolic fractions as determined by principal component analysis. Anim. Feed Sci. Technol. 163:231-243. https://doi.org/10.1016/j.anifeedsci.2010.11.009
  14. Jayanegara, A., F. Leiber, and M. Kreuzer. 2011b. Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr. 96:365-375.
  15. Jimenez, N., J. A. Curiel, I. Reveron, B. de las Rivas, and R. Munoz. 2013. Uncovering the Lactobacillus plantarum WCFS1 gallate decarboxylase involved in tannin degradation. Appl. Environ. Microbiol. 79:4253-4263. https://doi.org/10.1128/AEM.00840-13
  16. Kaplan, C. W., J. C. Astaire, M. E. Sanders, B. S. Reddy, and C. L. Kitts. 2001. 16S ribosomal DNA terminal restriction fragment pattern analysis of bacterial communities in feces of rats fed Lactobacillus acidophilus NCFM. Appl. Environ. Microbiol. 67:1935-1939. https://doi.org/10.1128/AEM.67.4.1935-1939.2001
  17. Kondo, M., Y. Hirano, K. Kita, A. Jayanegara, and H. Yokota. 2014. Fermentation characteristics, tannin contents and in vitro ruminal degradation of green tea and black tea by-products ensiled at different temperatures. Asian Australas. J. Anim. Sci. 27:937-945. https://doi.org/10.5713/ajas.2013.13387
  18. Landete, J. M., J. A. Curiel, H. Rodriguez, B. de las Rivas, and R. Munoz. 2008. Study of the inhibitory activity of phenolic compounds found in olive products and their degradation by Lactobacillus plantarum strains. Food Chem. 107:320-326. https://doi.org/10.1016/j.foodchem.2007.08.043
  19. Li, Y. and N. Nishino. 2013a. Changes in the bacterial community and composition of fermentation products during ensiling of wilted Italian ryegrass and wilted guinea grass silages. Anim. Sci. J. 84:607-612. https://doi.org/10.1111/asj.12046
  20. Liu, W. T., T. L. Marsh, H. Cheng, and L. J. Forney. 1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63:4516-4522.
  21. Lynch, J. P., P. O'Kiely, S. M. Waters, and E. M. Doyle. 2012. Conservation characteristics of corn ears and stover ensiled with the addition of Lactobacillus plantarum MTD-1, Lactobacillus plantarum 30114, or Lactobacillus buchneri 11A44. J. Dairy Sci. 95:2070-2080. https://doi.org/10.3168/jds.2011-5013
  22. Magurran, A. E. 2004. Measuring biological diversity. Blackwell Publishing, Malden, MA, USA.
  23. Makkar, H. P. S. 2003. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands.
  24. McDonald, P., A. R. Henderson, and S. J. E. Heron. 1991. The biochemistry of silage. Chalcombe publications. 2nd Ed. Centerbury, UK.
  25. Moss, A. R., J. Jouany, and J. Newbold. 2000. Methane production by ruminants: its contribution to global warming. Ann. Zootech. 49:231-253. https://doi.org/10.1051/animres:2000119
  26. Mulrooney, C. N. and L. Kung Jr. 2008. Short Communication: The effect of water temperature on the viability of silage inoculants. J. Dairy Sci. 91:236-240. https://doi.org/10.3168/jds.2007-0449
  27. Norton, B. W. 1994. The nutritive value of tree legumes. In: Forage Tree Legumes in Tropical Agriculture (Eds. R. C. Gutteridge and H. M. Shelton). CABI publishing, UK. pp. 177-191.
  28. Patra, A. K., B. Min, and J. Saxena. 2012. Dietary tannins on microbial ecology of the gastrointestinal tract in ruminants. In: Dietary Phytochemicals and Microbes (Ed. A. K. Patra). Spinger Sciences Business Media, Dordrecht, The Netherlands. pp. 237-262.
  29. Rodriguez, H., J. A. Curiel, J. M. Landete, B. de las Rivas, F. L. de Felipe, C. Gomez-Cordoves, J. M. Mancheno, and R. Munoz. 2009. Food phenolics and lactic acid bacteria. Int. J. Food Microbiol. 132:79-90. https://doi.org/10.1016/j.ijfoodmicro.2009.03.025
  30. Sakamoto, M., I. N. Rocas, J. F. Siqueira Jr, and Y. Benno. 2006. Molecular analysis of bacteria in asymptomatic and symptomatic endodontic infection. Oral Microbiol. Immunol. 21:112-122. https://doi.org/10.1111/j.1399-302X.2006.00270.x
  31. Sakamoto, M., Y. Takeuchi, M. Umeda, I. Ishikawa, and Y. Benno. 2003. Application of terminal RFLP analysis to characterize oral bacterial flora in saliva of healthy subjects and patients with periodontitis. J. Med. Microbiol. 52:79-89. https://doi.org/10.1099/jmm.0.04991-0
  32. Salawu, M. B., T. Acamovic, C. S. Stewart, T. Hvelplund, and M. R. Weisbjerg. 1999. The use of tannins as silage additives: effects on silage composition and mobile bag disappearance of dry matter and protein. Anim. Feed Sci. Technol. 82:243-259. https://doi.org/10.1016/S0377-8401(99)00105-4
  33. Shyu, C., T. Soule, S. J. Bent, J. A. Foster, and L. J. Forney. 2007. MiCA: a web-based tool for the analysis of microbial communities based on terminal-restriction fragment length polymorphisms of 16S and 18S rRNA genes. Microb. Ecol. 53:562-570. https://doi.org/10.1007/s00248-006-9106-0
  34. Sonja, N. H., S. D. Martens, P. Avila, and S. Hoedtke. 2012. The effect of inoculant and sucrose addition on the silage quality of tropical forage legumes with varying ensilability. Anim. Feed Sci. Technol. 174:201-210. https://doi.org/10.1016/j.anifeedsci.2012.03.017
  35. Steurm, C. D., T. T. Tiemann, C. E. Lascano, M. Kreuzer, and H. D. Hess, 2007. Nutrient composition and in vitro ruminal fermentation of tropical legume mixtures with contrasting tannin contents. Anim. Feed Sci. Technol. 138:29-46. https://doi.org/10.1016/j.anifeedsci.2006.11.008
  36. Tiemann, T. T., C. E. Lascano, H. R. Wettstein, A. C. Mayer, M. Kreuzer, and H. D. Hess. 2008. Effect of the tropical tanninrich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. Animal 2:790-799.
  37. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  38. Wanapat, M., S. Kang, P. Khejornsart, R. Pilajun, and S. Wanapat. 2014. Performance of tropical dairy cows fed whole crop rice silage with varying levels of concentrate. Trop. Anim. Health Prod. 46:185-189. https://doi.org/10.1007/s11250-013-0473-5

Cited by

  1. Effects of Wilting and Lactobacillus plantarum Addition on the Fermentation Quality and Microbial Community of Moringa oleifera Leaf Silage vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.01817
  2. Silage fermentation, chemical composition and ruminal degradation of king grass, cassava foliage and their mixture pp.17446961, 2019, https://doi.org/10.1111/grs.12235
  3. Effects on microbial diversity of fermentation temperature (10℃ and 20℃), long-term storage at 5℃, and subsequent warming of corn silage vol.32, pp.10, 2015, https://doi.org/10.5713/ajas.18.0792
  4. The Microbiota Dynamics of Alfalfa Silage During Ensiling and After Air Exposure, and the Metabolomics After Air Exposure Are Affected by Lactobacillus casei and Cellulase Addition vol.11, pp.None, 2020, https://doi.org/10.3389/fmicb.2020.519121
  5. Effects of probiotics and encapsulated probiotics on enteric methane emission and nutrient digestibility in vitro vol.788, pp.1, 2015, https://doi.org/10.1088/1755-1315/788/1/012050