DOI QR코드

DOI QR Code

Effects of Corn and Soybean Meal Types on Rumen Fermentation, Nitrogen Metabolism and Productivity in Dairy Cows

  • Shen, J.S. (Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University) ;
  • Song, L.J. (Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University) ;
  • Sun, H.Z. (Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University) ;
  • Wang, B. (Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University) ;
  • Chai, Z. (Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University) ;
  • Chacher, B. (Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University) ;
  • Liu, J.X. (Institute of Dairy Science, MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University)
  • 투고 : 2014.07.09
  • 심사 : 2014.10.08
  • 발행 : 2015.03.01

초록

Twelve multiparous Holstein dairy cows in mid-lactation were selected for a replicated $4{\times}4$ Latin square design with a $2{\times}2$ factorial arrangement to investigate the effects of corn and soybean meal (SBM) types on rumen fermentation, N metabolism and lactation performance in dairy cows. Two types of corn (dry ground [DGC] and steam-flaked corn [SFC]) and two types of SBM (solvent-extracted and heat-treated SBM) with different ruminal degradation rates and extents were used to formulate four diets with the same basal ingredients. Each period lasted for 21 days, including 14 d for adaptation and 7 d for sample collection. Cows receiving SFC had a lower dry matter (DM) and total N intake than those fed DGC. However, the milk yield and milk protein yield were not influenced by the corn type, resulting in higher feed and N utilization efficiency in SFC-fed cows than those receiving DGC. Ruminal acetate concentrations was greater and total volatile fatty acids concentrations tended to be greater for cows receiving DGC relative to cows fed SFC, but milk fat content was not influenced by corn type. The SFC-fed cows had lower ruminal ammonia-N, less urea N in their blood and milk, and lower fecal N excretion than those on DGC. Compared with solvent-extracted SBM-fed cows, cows receiving heat-treated SBM had lower microbial protein yield in the rumen, but similar total tract apparent nutrient digestibility, N metabolism measurements, and productivity. Excessive supply of metabolizable protein in all diets may have caused the lack of difference in lactation performance between SBM types. Results of the present study indicated that increasing the energy degradability in the rumen could improve feed efficiency, and reduce environmental pollution.

키워드

참고문헌

  1. Accorsi, P. A., M. Gamberoni, G. Isani, N. Govoni, R. Viggiani, M. Monari, M. DE Ambrogi, A. Munno, C. Tamanini, and E. Seren. 2005. Leptin does not seem to influence glucose uptake by bovine mammary explants. J. Physiol. Pharmacol. 56:689-698.
  2. AOAC (Association of Official Analytical Chemists). 1990. Official Methods of Analysis. Vol. 1. 15th ed. AOAC, Arlington, VA, USA.
  3. Bach, A., S. Calsamiglia, and M. D. Stern 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88:E9-E21. https://doi.org/10.3168/jds.S0022-0302(05)73133-7
  4. Barham, D. and P. Trinder. 1972. An improved color reagent for the determination of blood glucose by the oxidase system. Analyst 97:142-145. https://doi.org/10.1039/an9729700142
  5. Bertrand, A., Y. Castonguay, P. Nadeau, S. Laberge, R. Michaud, G. Belanger, and P. Rochette. 2003. Oxygen deficiency affects carbohydrate reserves in overwintering forage crops. J. Exp. Bot. 54:1721-1730. https://doi.org/10.1093/jxb/erg182
  6. Broderick, G. A. and M. K. Clayton. 1997. A statistical evaluation of animal and nutritional factors influencing concentrations of milk urea nitrogen. J Dairy Sci. 80:2964-2971. https://doi.org/10.3168/jds.S0022-0302(97)76262-3
  7. Burkholder, K. M., A. D. Guyton, J. M. McKinney, and K. F. Knowlton. 2004. The effect of steam flaked or dry ground corn and supplemental phytic acid on nitrogen partitioning in lactating cows and ammonia emission from manure. J. Dairy Sci. 87:2546-2553. https://doi.org/10.3168/jds.S0022-0302(04)73379-2
  8. Calsamiglia, S., A. Ferret, C. K. Reynolds, N. B. Kristensen, and A. M. van Vuuren. 2010. Strategies for optimizing nitrogen use by ruminants. Animal 4:1184-1196. https://doi.org/10.1017/S1751731110000911
  9. Casper, D. P., H. A. Maiga, M. J. Brouk, and D. J. Schingoethe. 1999. Synchronization of carbohydrate and protein sources on fermentation and passage rates in dairy cows. J. Dairy Sci. 82:1779-1790. https://doi.org/10.3168/jds.S0022-0302(99)75408-1
  10. Chaney, A. L., and E. P. Marbach. 1962. Modified reagents for determination of urea and ammonia. Clin. Chem. 8:130-132.
  11. Chen, X. B. and M. J. Gomes. 1992. Estimation of Microbial Protein Supply to Sheep and Cattle Based on Urinary Excretion of Purine Derivatives - An Overview of the Technical Details. International Feed Resources Unit, Rowett Research Inst., Bucksburn, Aberdeen, AB2 9SB, UK. Occasional Publication.
  12. Clark, J. H., T. H. Klusmeyer, and M. R. Cameron. 1992. Microbial protein synthesis and flows of nitrogen fractions to the duodenum of dairy cows. J. Dairy Sci. 75:2304-2323. https://doi.org/10.3168/jds.S0022-0302(92)77992-2
  13. Daniels, K. M., S. R. Hill, K. F. Knowlton, R. E. James, M. L. McGilliard, and R. M. Akers. 2008. Effects of milk replacer composition on selected blood metabolites and hormones in preweaned Holstein heifers. J. Dairy Sci. 91:2628-2640. https://doi.org/10.3168/jds.2007-0859
  14. Delgado-Elorduy, A., C. B. Theurer, J. T. Huber, A. Alio, O. Lozano, M. Sadik, P. Cuneo, H. D. De Young, I. J. Simas, J. E. Santos, L. Nussio, C. Nussio, K. J. Webb, and H. Tagari. 2002. Splanchnic and mammary nitrogen metabolism by dairy cows fed dry-rolled or steam-flaked sorghum grain. J. Dairy Sci. 85:148-159. https://doi.org/10.3168/jds.S0022-0302(02)74063-0
  15. Dewhurst, R. J. and D. R. Davies, and R. J. Merry. 2000. Microbial protein supply from the rumen. Anim. Feed Sci. Technol. 85:1-21. https://doi.org/10.1016/S0377-8401(00)00139-5
  16. Dhiman, T. R., M. S. Zaman, I. S. MacQueen, and R. L. Boman. 2002. Influence of corn processing and frequency of feeding on cow performance. J. Dairy Sci. 85:217-226. https://doi.org/10.3168/jds.S0022-0302(02)74070-8
  17. Ferraretto, L. F. and P. M. Crump, and R. D. Shaver. 2013. Effect of cereal grain type and corn grain harvesting and processing methods on intake, digestion, and milk production by dairy cows through a meta-analysis. J. Dairy Sci. 96:533-550. https://doi.org/10.3168/jds.2012-5932
  18. Guyton, A. D., J. M. McKinney, and K. F. Knowlton. 2003. The effect of steam-flaked or dry ground corn and supplemental phytic acid on phosphorus partitioning and ruminal phytase activity in lactating cows. J. Dairy Sci. 86:3972-3982. https://doi.org/10.3168/jds.S0022-0302(03)74008-9
  19. Gozho, G. N., M. R. Hobin, and T. Mutsvangwa. 2008. Interactions between barley grain processing and source of supplemental dietary fat on nitrogen metabolism and ureanitrogen recycling in dairy cows. J. Dairy Sci. 91:247-259. https://doi.org/10.3168/jds.2007-0407
  20. Hall, M. B. and G. B. Huntington. 2008. Nutrient synchrony: Sound in theory, elusive in practice. J. Anim. Sci. 86(14 Suppl): E287-E292.
  21. Henning, P. H. and D. G. Steyn, and H. H. Meissner. 1993. Effect of synchronization of energy and nitrogen supply on ruminal characteristics and microbial growth. J. Anim. Sci. 71:2516-2528.
  22. Hu, W. L., J. X. Liu, J. A. Ye, Y. M. Wu, and Y. Q. Guo. 2005. Effect of tea saponin on rumen fermentation in vitro. Anim. Feed Sci. Technol. 120:333-339. https://doi.org/10.1016/j.anifeedsci.2005.02.029
  23. Huntington, G. B. 1997. Starch utilization by ruminants: from basics to the bunk. J. Anim. Sci. 75:852-867.
  24. Ministry of Agriculture of P. R. China. 2004. Feeding Standard of Dairy Cattle (NY/T 34-2004). Ministry of Agriculture of P. R. China, Beijing, China.
  25. National Research Council. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Natl. Acad. Sci., Washington, DC, USA.
  26. Nocek, J. E. and J. B. Russell. 1988. Protein and energy as an integrated system. Relationship of ruminal protein and carbohydrate availability to microbial synthesis and milk production. J. Dairy Sci. 71:2070-2107. https://doi.org/10.3168/jds.S0022-0302(88)79782-9
  27. Olmos Colmenero, J. J. and G. A. Broderick. 2006. Effect of amount and ruminal degradability of soybean meal protein on performance of lactating dairy cows. J. Dairy Sci. 89:1635-1643. https://doi.org/10.3168/jds.S0022-0302(06)72230-5
  28. Orskov, E. R., F. D. D. Hovell, and F. Mould. 1980. The use of the nylon bag technique for the evaluation of feedstuffs. Trop. Anim. Prod. 5:195-213.
  29. Oser, B. L. 1965. Hawk's Physiological Chemistry. 14th ed. McGraw-Hill, New York, NY, USA.
  30. Rahmatullah, M. and T. R. Boyde. 1980. Improvements in the determination of urea using diacetyl monoxime; methods with and without deproteinisation. Clin. Chim. Acta 107:3-9. https://doi.org/10.1016/0009-8981(80)90407-6
  31. Reynal, S. M. and G. A. Broderick. 2003. Effects of feeding dairy cows protein supplements of varying ruminal degradability. J. Dairy Sci. 86:835-843. https://doi.org/10.3168/jds.S0022-0302(03)73666-2
  32. Rius, A. G., J. A. R. N. Appuhamy, J. Cyriac, D. Kirovski, O. Becvar, J. Escobar, M. L. McGilliard, B. J. Bequette, R. M. Akers, and M. D. Hanigan. 2010. Regulation of protein synthesis in mammary glands of lactating dairy cows by starch and amino acids. J. Dairy Sci. 93:3114-3127. https://doi.org/10.3168/jds.2009-2743
  33. Rooney, L. W. and R. L. Pflugfeder. 1986. Factors affecting starch digestibility with special emphasis on sorghum and corn. J. Anim. Sci. 63:1607-1623.
  34. Rotger, A., A. Ferret, S. Calsamiglia, and X. Manteca. 2006. Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets. J. Anim. Sci. 84:1188-1196.
  35. Shen, J. S., Z. Chai, L. J. Song, J. X. Liu, and Y. M. Wu. 2012. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J. Dairy Sci. 95:5978-5984. https://doi.org/10.3168/jds.2012-5499
  36. Sinclair, K. D., P. C. Garnsworthy, G. E. Mann, and L. A. Sinclair. 2014. Reducing dietary protein in dairy cow diets: implications for nitrogen utilization, milk production, welfare and fertility. Animal 8:262-274. https://doi.org/10.1017/S1751731113002139
  37. Sinclair, L. A., P. C. Garnsworthy, J. R. Newbold, and P. J. Buttery. 1993. Effect of synchronizing the rate of dietary energy and nitrogen release on rumen fermentation and microbial protein synthesis in sheep. J. Agric. Sci. 120:251-263. https://doi.org/10.1017/S002185960007430X
  38. Tamminga, S., W. M. Vanstraalen, A. P. J. Subnel, R. G. M. Meijer, A. Steg, C. J. G. Wever, and M. C. Blok. 1994. The dutch protein evaluation system: The DVE/OEB-system. Livest. Prod. Sci. 40:139-155. https://doi.org/10.1016/0301-6226(94)90043-4
  39. Valadares, R. F. D., G. A. Broderick, S. C. Valadares Filho, and M. K. Clayton. 1999. Effect of replacing alfalfa silage with high moisture corn on ruminal protein synthesis estimated from excretion of total purine derivatives. J. Dairy Sci. 82:2686-2696. https://doi.org/10.3168/jds.S0022-0302(99)75525-6
  40. Van Keulen, V. and B. H. Young. 1977. Evaluation of acidinsoluble ash as a natural marker in ruminant digestibility studies. J. Anim. Sci. 44:282-287.
  41. Van Soest, P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. https://doi.org/10.3168/jds.S0022-0302(91)78551-2
  42. Yu, P., J. T. Huber, F. A. P. Santos, J. M. Simas, and C. B. Theurer. 1998. Effects of ground, steam-flaked, and steam-rolled corn grains on performance of lactating cows. J. Dairy Sci. 81:777-783. https://doi.org/10.3168/jds.S0022-0302(98)75634-6
  43. Zhao, F. Q. and A. F. Keating. 2007. Expression and regulation of glucose transporters in the bovine mammary gland. J. Dairy Sci. 90(E. Suppl.):E76-E86. https://doi.org/10.3168/jds.2006-470
  44. Zhong, R. Z., J. G. Li, Y. X. Gao, Z. L. Tan, and G. P. Ren. 2008. Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows. J. Dairy Sci. 91:3931-3937. https://doi.org/10.3168/jds.2007-0957

피인용 문헌

  1. Effects of rumen-degradable protein:rumen-undegradable protein ratio and corn processing on production performance, nitrogen efficiency, and feeding behavior of Holstein dairy cows vol.101, pp.2, 2018, https://doi.org/10.3168/jds.2017-12776
  2. Dose-response effect of a pine bark extract on in vitro ruminal ammonia and methane formation kinetics vol.68, pp.4, 2015, https://doi.org/10.1080/09064702.2019.1694575
  3. Effect of dietary crude protein degradability and corn processing on lactation performance and milk protein composition and stability vol.102, pp.5, 2015, https://doi.org/10.3168/jds.2018-15553
  4. A study on comparative feeding value of corn flakes according to temperature and retention time in the pressurized steam chamber vol.61, pp.3, 2015, https://doi.org/10.5187/jast.2019.61.3.170
  5. Specific enrichment of microbes and increased ruminal propionate production: the potential mechanism underlying the high energy efficiency of Holstein heifers fed steam-flaked corn vol.9, pp.1, 2015, https://doi.org/10.1186/s13568-019-0937-8