DOI QR코드

DOI QR Code

Analysis of Unsteady Propagation of Mode III Crack in Arbitrary Direction in Functionally Graded Materials

함수구배재료에서 임의의 방향을 따라 비정상적으로 전파하는 모드 III 균열해석

  • 이광호 (경북대학교 자동차공학부) ;
  • 조상봉 (경남대학교 기계공학부) ;
  • 황재석 (영남대학교 기계공학부)
  • Received : 2014.05.27
  • Accepted : 2014.11.19
  • Published : 2015.02.01

Abstract

The stress and displacement fields at the crack tip were studied during the unsteady propagation of a mode III crack in a direction that was different from the property graduation direction in functionally graded materials (FGMs). The property graduation in FGMs was assumed based on the linearly varying shear modulus under a constant density and the exponentially varying shear modulus and density. To obtain the solution of the harmonic function, the general partial differential equation of the dynamic equilibrium equation was transformed into a Laplace equation. Based on the Laplace equation, the stress and displacement fields, which depended on the time rates of change in the crack tip speed and stress intensity factor, were obtained through an asymptotic analysis. Using the stress and displacement fields, the effects of the angled property variation on the stresses, displacements, and stress intensity factors are discussed.

함수구배재료의 모드 III 균열이 물성치 구배방향과 다른 방향으로 비정상적으로 전파할 때 전파균열선단부근의 응력 및 변위장에 대하여 연구하였다. 함수구배재료는 밀도가 일정한 상태에서 전단탄성계수가 선형적으로 변화하는 경우와 밀도와 전단탄성계수가 지수형적으로 변화하는 경우로 가정했다. 조화함수의 해를 얻기 위하여 일반적인 편미분방정식의 동적평형방정식을 라플라스 방정식으로 변환하였다. 라플라스 방정식으로부터 균열속도 변화률, 응력확대계수의 변화률 등에 의존되는 응력장과 변위장을 근접해법으로 얻었다. 본 연구에서 얻어진 응력장과 변위장을 사용하여 재료의 비 균질성, 균열속도의 변화률, 응력확대계수의 변화률 등을 고려한 상태에서 균열이 임의의 방향으로 전파할 때 균열선단부근의 응력 및 변위 그리고 응력확대계수에 대하여 연구하였다.

Keywords

Acknowledgement

Supported by : 경북대학교

References

  1. Koizumi, M., 1997, "FGM Activities in Japan," Composites part B, Vol. 28B, pp. 1-4.
  2. Xing, A., Jun, Z., Chuanzhen, H., Jianhua, Z., 1998, "Development of an Advanced Ceramic Tool Material-Functionally Gradient Cutting Ceramics," Mater. Sci. Eng, (A), Vol. 248, pp.125-131. https://doi.org/10.1016/S0921-5093(98)00502-4
  3. Pompea, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempele, U., Charnweber D., Schulte, K., 2003, "Functionally Graded Materials for Biomedical Applications," Mat. Sci. Eng. A, Vol. 362, pp. 40-60. https://doi.org/10.1016/S0921-5093(03)00580-X
  4. Steinhausen, R., Kouvatov, A., Pientschke, C., Langhammer, H.T., Seifert, W., Beige, H., Abicht, H., 2004, "AC-Poling of Functionally Graded Piezoelectric Bending Devices," Integrated Ferroelectrics, Vol. 63, pp.15-20. https://doi.org/10.1080/10584580490458360
  5. Chen, E.S.C., 1999, "Army Focused Research Team on Functionally Graded Armor Composites," Mater. Sci. Eng. (A), Vol. 259, pp.155-161. https://doi.org/10.1016/S0921-5093(98)00883-1
  6. Eischen J. W., 1987, "Fracture of Nonhomogeneous Materials," Int. J. Fract., 34(1) pp. 3-22. https://doi.org/10.1007/BF00042121
  7. Lee, K. H., 2004, "Characteristics of a Crack Propagating Along the Gradient in Functionally Gradient Materials," Int. J. Solids and Struct., Vol. 41, pp. 2879-2898. https://doi.org/10.1016/j.ijsolstr.2004.01.004
  8. Erdogan F., 1995, "Fracture Mechanics of Functionally Graded Materials," Composites Engineering, Vol. 5, No. 7, pp. 753-770. https://doi.org/10.1016/0961-9526(95)00029-M
  9. Jin Z. H., Noda N., 1994, "Crack-tip singular fields in Nonhomogeneous Materials," J. Appl. Mech., Vol. 61, pp. 738-740. https://doi.org/10.1115/1.2901529
  10. Gu, P., Asaro, R. J., 1997, "Cracks in Functionally Graded Materials," Int, J. Solids Struct., 34(1), 1-17. https://doi.org/10.1016/0020-7683(95)00289-8
  11. Atkinson, C., 1975, "Some Results on the Crack Propagation in Media with Spatially Varying Elastic Moduli," Int. J. Fract., 11(4) pp. 619-628. https://doi.org/10.1007/BF00116369
  12. Lee, K. H., 2004, "Characteristics for a Mode III Crack Propagating Along Interface Between Isotropic and Functionally Gradient Material with Linear Property Gradation Along X Direction," Trans. Korean Soc. Mech. Eng. A, Vol. 28, No. 10, pp. 1500-1508. https://doi.org/10.3795/KSME-A.2004.28.10.1500
  13. Lee, K. H., Cho, S. B., 2006, "Stress and Displacement fields of a Propagating Mode III Crack in Orthotropic Functionally Gradient Materials with Property Gradient Along X Direction," Trans. Korean Soc. Mech. Eng. A, Vol. 30, No. 3, pp. 249-259. https://doi.org/10.3795/KSME-A.2006.30.3.249
  14. Lee, K. H., 2009, "Analysis of a Propagating Crack in Functionally Graded Materials with Property Variation Angled to Crack Direction," Comput. Mater. Sci., Vol. 45, pp. 941-950. https://doi.org/10.1016/j.commatsci.2008.12.016
  15. Lee, K. H., 2009, " Analysis of a Transiently Propagating Crack in Functionally Graded Materials Under Mode I and II," Int. J. Eng. Sci., Vol. 47, pp. 852-865. https://doi.org/10.1016/j.ijengsci.2009.05.004
  16. Chalivendra, V. B., 2007, "Asymptotic Analysis of Transient Curved Crack in Functionally Graded Materials," Int. J. Solids Struct., Vol. 44, pp.465-479. https://doi.org/10.1016/j.ijsolstr.2006.04.033
  17. Lee, K. H., 2010, "Transient Elastodynamic Mode III Crack Growth in Functionally Graded Materials," Trans. Korean Soc. Mech. Eng. A, Vol. 34, No. 7, pp. 851-858. https://doi.org/10.3795/KSME-A.2010.34.7.851
  18. Delale, F. and Erdogan, F, 1983, "The Crack Problem for a Nonhomogeneous Plane," J. Appl. Mech., Vol. 50, pp.609-614. https://doi.org/10.1115/1.3167098
  19. Dolbow, J. E. and Gosz, M., 2002, "On the Computation of Mixed-Mode Stress Intensity Factors in Functionally Graded Materials," Int. J of Solids and Struct., Vol. 39, pp. 2557-2574. https://doi.org/10.1016/S0020-7683(02)00114-2
  20. Kim, J. H. and Paulino, G. H., 2002, "Finite Element Evaluation of Mixed Mode Stress Intensity Factors in Functionally Graded Materials," Int. J. Numer. Meth. Engng., Vol. 53, pp. 1903-1935. https://doi.org/10.1002/nme.364
  21. Freund, L. B., 1990, Dynamic Fracture Mechanics, Cambridge University Press, Cambrage
  22. Shaw, L. L., 1998, The Crack Driving Force of Functionally Graded Materials," J. of Mat. Sci. Letters, Vol. 17, pp. 65-67.