DOI QR코드

DOI QR Code

Analysis of Elbow Reflexes Using Activation Model for Stretch Reflex

신장반사로 인한 근활성도 예측 모델을 이용한 삼두박근 반사 해석

  • 강문정 (한양대학교 융합기계공학과) ;
  • 조영남 (한양대학교 융합기계공학과) ;
  • 채제욱 (국방과학연구소) ;
  • 유홍희 (한양대학교 융합기계공학과)
  • Received : 2014.05.27
  • Accepted : 2014.12.02
  • Published : 2015.03.01

Abstract

The elbow reflex, a principal reflex in the upper extremity, plays an important role in the diagnosis of cervical spine syndromes. In this study, the muscle activations of brachial biceps and triceps, and the kinematics of upper extremities were predicted using an activation model for the stretch reflex. The muscle activations that equated the simulation results estimated by the analysis model with the experimental results were obtained first, and the activations obtained from the simulations were compared with the electromyography signals obtained from the experiments, for model validation. The root mean squares error of the joint angles (obtained from experiments and simulation using the suggested model) was 0.056, a value that is half of that obtained using the previous model. This demonstrates that the suggested model corresponded well with the actual reflex.

삼두박근 반사는 인체 상지에서 발생하는 대표적인 신장반사이며 경추의 이상 등을 판단하는데 중요한 역할을 수행한다. 본 연구에서는 이를 생체역학적으로 해석하기 위하여 새롭게 정의된 신장반사 해석 모델을 이용하여 해석적으로 상완 이두박근과 삼두박근의 근활성도 및 상완의 운동 정보를 예측하였다. 해석을 통해 예측된 운동 정보와 실험 결과가 같도록 하는 근활성도를 구하고, 이를 근전도 실험 결과와 비교하여 해석 모델과 방법의 타당성을 검증하였다. 제안된 모델과 실험을 통해 얻은 관절의 각도들의 최소자승오차는 0.056 으로 기존의 모델을 사용하여 얻은 오차의 절반 수준이다. 이것은 제안된 모델이 실제 현상과 잘 부합한다는 것을 나타낸다.

Keywords

References

  1. Madden, J.D.W., Vandesteeg, N. A., Anquetil, P. A., Madden P.G.A., Takshi A., Pytel, R.Z., Lafontaine. S R., Wieringa, P. A. and Hunter I. W., 2004, "Artificial Muscle Technology: Physical Principles and Naval Prospects," IEEE J. Oceanic Eng, Vol. 29, No. 3, pp.706-728 https://doi.org/10.1109/JOE.2004.833135
  2. Zajac, F. E., 1989, "Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control," Critical Reviews in Biomed. Eng, Vol. 17, No. 4, pp. 395-411
  3. Hoy, M. G., Zajac, F. E. and Gordon, M. E., 1990, "A Musculoskeletal Model of the Human Lower Extremity: the Effect of Muscle, Tendon and Moment Arm on the Moment-Angle Relationship of Musculotendon actuators at the Hip, Knee and Ankle," J. Biomech., Vol. 23, No. 2, pp.157-169. https://doi.org/10.1016/0021-9290(90)90349-8
  4. Menegaldo, L. L., Fleury, A. T. and Weber, H. I., 2004, "Moment Arms and Musculotendon Lengths Estimation for a Three-dimensional Lower-limb Model," J. Biomech., Vol. 37, pp. 1447-1453. https://doi.org/10.1016/j.jbiomech.2003.12.017
  5. Leva, P. D., 1996, "Adjustments To Zatsiorsky-Seluyanov's Segment Inertia Parameters," J. Biomech., Vol. 29, No. 9, pp. 1223-1230. https://doi.org/10.1016/0021-9290(95)00178-6
  6. Pigeon, P., Yahia, L. and Feldman, A. G., 1996, "Moment Arms And Lengths Of Human Upper Limb Muscles As Functions Of Joint Angles," J. Biomech, Vol. 29, No. 10, pp. 1365-1370. https://doi.org/10.1016/0021-9290(96)00031-0
  7. Katz, R. T. and Rymer, W. Z., 1989, "Spastic Hypertonia: Mechanisms and Measurement," Arch. Phys. Med. Rehab., Vol. 70, pp. 144-155.
  8. Hammond, P.H., 1954, "Involuntary Activity in Biceps Following the Sudden Application of Velocity to the Abducted Forearm," J. Physiol. (Lond.) Vol. 127, p. 23
  9. Ghez, C. and Shinoda, Y., 1978, "Spinal Mechanisms of the Functional Stretch Reflex," Exp. Brain. Res., Vol. 32, pp. 55-68.
  10. Wartenberg, R., 1951, "Pendulousness of the Leg as a Diagnostic Test," Neurology, Vol. 1, pp. 18-24. https://doi.org/10.1212/WNL.1.1.18
  11. He, J., Norling, W. R. and Wang, Y., 1997, "A Dynamic Neuromuscular Model for Describing the Pendulum Test of Spasticity," IEEE Trans. Biomed. Eng., Vol. 44, pp. 175-184. https://doi.org/10.1109/10.554764
  12. He, J., 1998, "Stretch Reflex Sensitivity: Effects of Postural and Muscle Length Changes," IEEE Trans. Rehab. Eng., Vol. 6, No. 2, pp. 182-189. https://doi.org/10.1109/86.681184
  13. Schuurmans, J., Helm, C. T. and Schouten, A. C., 2011, "Relating Reflex Gain Modulation in Posture Control to Underlying Neural Network Properties Using a Neuromuscuolskeletal Model," J. Comput, Neurosci, Vol. 30, pp. 555-565. https://doi.org/10.1007/s10827-010-0278-8
  14. Mugge, W., Abbink, D. A., Schouten, A. C., Dewald, J. P. A. and Helm, C. T., 2010, "A Rigorous Model of Reflex Function Indicates that Position and Force Feedback are Flexibly Tuned to Position and Force Tasks," Exp. Brain. Res., Vol. 200, pp. 325-340. https://doi.org/10.1007/s00221-009-1985-0
  15. Vedula, S., Kearney, R. E., Wagner, R. and Stapley, P. J., 2010, "Decoupling of Stretch Reflex and Background Muscle Activity During Anticipatory Postural Adjustments in Humans," Exp. Brain. Res, Vol. 205, pp. 205-213. https://doi.org/10.1007/s00221-010-2357-5
  16. Ritzmann, R., Kramer, A., Gollhofer, A. and Taube, W., 2013, "The Effect of Whole Body Vibration on the H-reflex, the Stretch Reflex, and the Short-latency Response During Hopping," Scand. J. Med. Sci. Sports, Vol. 23, pp. 331-339. https://doi.org/10.1111/j.1600-0838.2011.01388.x
  17. Obata, H., Kawashima, N., Akai, M., Nakazawa, K. and Ohtsuki, T., 2010, "Age-related Changes of the Stretch Reflex Excitability in Human Ankle Muscles," J. Electromyogr. Kines., Vol. 20, No. 1, pp. 55-60. https://doi.org/10.1016/j.jelekin.2009.01.009
  18. Buchanan, T. S., Lloyd, D. G., Manal, K. and Beiser, T. F., 2004, "Neuro-musculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements from Measurements of Neural Command," J. Appl. Biomech, Vol. 20, pp. 367-395. https://doi.org/10.1123/jab.20.4.367
  19. Feng, C. J. and Mak, A.F.T., 1998, "Neuromuscular Model for the Stretch Reflex in Passive Movement of Spastic Elbow Joint," Proc. IEEE Eng. Med. Bio. Soc., Vol. 20, No. 5, pp. 2317-2320.
  20. Feng, C. J. and Mak, A.F.T., 1998, "Neuromuscular Model for," Proc. Bio. Soc., Vol.20, No.5, pp. 2317-2320.
  21. Lin, D. C. and Rymer, W. Z., 1991, "A Quantitative Analysis of Pendular Motion of the Lower Leg in Spastic Human Subjects," IEEE Trans. Biomed. Eng., Vol. 28, No.9, pp. 906-918.
  22. Kang, M. J., Jo, Y. N. and Yoo, H. H., 2014, "Identification of Muscle Forces and Activation of Quadriceps Femoris Muscles of Healthy Adults Considering Knee Damping Effects during Patellar Tendon Reflex," Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 1, pp. 57-62. https://doi.org/10.3795/KSME-B.2014.38.1.057
  23. Veeger, H. E. J., Van der Helm, F. C. T., Van der Woude, L. H. V., Pronk, G. M. and Rozendal, R. H., 1991, "Inertia and Muscle Contraction Parameters for Musculoskeletal Modelling of The Shoulder Mechanism," J. Biomech., Vol. 24, No. 7, pp. 615-629. https://doi.org/10.1016/0021-9290(91)90294-W
  24. Hill, A. V., 1938, "The Heat of Shortening and Dynamics Constants of Muscles," Proceedings of the Royal Society of London, Series B, Biological Sciences, Vol. 126, No. 843, pp. 136-195. https://doi.org/10.1098/rspb.1938.0050
  25. Garner, B. A. and Pandy, M. G., 2010, "Musculoskeletal Model of the Upper Limb Based on the Visible Human Male Dataset," Comp. Meth. Biomech. Biomed. Eng., Vol. 4, pp. 93-126.