Abstract
In this paper, we propose a prototype-based classification learning by using the nearest-neighbor rule. The nearest-neighbor is applied to segment the class area of all the training data into spheres within which the data exist from the same class. Prototypes are the center of spheres and their radii are computed by the mid-point of the two distances to the farthest same class point and the nearest another class point. And we transform the prototype selection problem into a set covering problem in order to determine the smallest set of prototypes that include all the training data. The proposed prototype selection method is based on a greedy algorithm that is applicable to the training data per class. The complexity of the proposed method is not complicated and the possibility of its parallel implementation is high. The prototype-based classification learning takes up the set of prototypes and predicts the class of test data by the nearest neighbor rule. In experiments, the generalization performance of our prototype classifier is superior to those of the nearest neighbor, Bayes classifier, and another prototype classifier.
본 논문에서는 최근접 이웃 규칙을 이용한 프로토타입 선택 기반 분류 학습을 제안하였다. 각 훈련 데이터가 대표하는 클래스 영역을 구(sphere)로 분할하는데 최근접 이웃 규칙을 적용시키며, 구의 내부는 동일 클래스 데이터들만 포함하도록 한다. 프로토타입은 구의 중심점이며 프로토타입의 반지름은 가장 인접한 다른 클래스 데이터와 가장 먼 동일 클래스 데이터의 중간 거리 값으로 결정한다. 그리고 전체 훈련 데이터를 대표하는 최소의 프로토타입 집합을 선택하기 위해 집합 덮개 최적화를 이용하여 프로토타입 선택 문제를 변형시켰다. 제안하는 프로토타입 선택 방법은 클래스 별 적용이 가능한 그리디 알고리즘으로 설계되었다. 제안하는 방법은 계산 복잡도가 높지 않으며, 대규모 훈련 데이터에 대한 병렬처리의 가능성이 높다. 프로토타입 기반 분류 학습은 선택된 프로토타입 집합을 새로운 훈련 데이터 집합으로 사용하고 최근접 이웃 규칙을 적용하여 테스트 데이터의 클래스를 예측한다. 실험에서 제안하는 프로토타입 기반 분류기는 최근접 이웃 학습, 베이지안 분류 학습과 다른 프로토타입 분류기에 비해 일반화 성능이 우수하였다.