DOI QR코드

DOI QR Code

Maximum Degree Vertex Domatic Set Algorithm for Domatic Number Problem

도메틱 수 문제에 관한 최대차수 정점 지배집합 알고리즘

  • Lee, Sang-Un (Dept. of Multimedia Eng., Gangneung-Wonju National University)
  • 이상운 (강릉원주대학교 멀티미디어공학과)
  • Received : 2014.10.03
  • Accepted : 2014.12.25
  • Published : 2015.02.28

Abstract

In the absence of a polynomial time algorithm capable of obtaining the exact solutions to it, the domatic number problem (DNP) of dominating set (DS) has been regarded as NP-complete. This paper suggests polynomial-time complexity algorithm about DNP. In this paper, I select a vertex $v_i$ of the maximum degree ${\Delta}(G)$ as an element of a dominating set $D_i,i=1,2,{\cdots},k$, compute $D_{i+1}$ from a simplified graph of $V_{i+1}=V_i{\backslash}D_i$, and verify that $D_i$ is indeed a dominating set through $V{\backslash}D_i=N_G(D_i)$. When applied to 15 various graphs, the proposed algorithm has succeeded in bringing about exact solutions with polynomial-time complexity O(kn). Therefore, the proposed domatic number algorithm shows that the domatic number problem is in fact a P-problem.

최대 지배집합의 수인 도메틱 수 문제 (DNP)는 정확한 해를 다항시간으로 구하는 알고리즘이 존재하지 않아 NP-완전 문제로 알려져 있다. 본 논문은 DNP의 해를 다항시간으로 구하는 알고리즘을 제안하였다. 그래프의 최대 차수 ${\Delta}(G)$ 정점 $v_i$$D_i,i=1,2,{\cdots},k$의 지배집합의 원소로 선택하는 방법을 적용하고, $V_{i+1}=V_i{\backslash}D_i$의 축소된 그래프에 대해 $D_{i+1}$을 구하였다. 또한 $V{\backslash}D_i=N_G(D_i)$$D_i$가 지배집합으로 되는지 여부를 검증하였다. 제안된 알고리즘을 15개의 다양한 그래프에 적용한 결과 정확한 해를 다항시간 복잡도 O(kn)으로 구하는데 성공하였다. 결국, 제안된 알고리즘은 도메틱 수 문제가 P-문제임을 보였다.

Keywords

References

  1. Wikipedia, "Dominating Set," http://en.wikipedia.org/wiki/Dominating_set, 2014.
  2. L. Ruan, H. Du, X. Jia, W. Wu, Y. Li, and K. I. Ko, "A Greedy Approximation for Minimum Connected Dominating Sets," Theoretical Computer Science, Vol. 329, pp. 325-330, 2004. https://doi.org/10.1016/j.tcs.2004.08.013
  3. M. A. Henning, C. L"owenstein, and D. Rautenbach, "Remarks about Disjoint Dominating Sets," http://www.tu-ilmenau.de/fakmn/fileadmin/templete/fm/Preprints/Rautenbach/08_09_Rautenbach.pdf, 2008.
  4. A. Desrochers, "Island Network Analysis: MSTs and Dominating Sets," Dept. of Mathematics, Saint Michael's College, Winooski Park Colchester, 2004.
  5. A. S. K. Pathan and C. S. Hong, "A Key-Predistribution- Based Weakly Connected Dominating Set for Secure Clustering in DSN," HPCC 2006, pp. 270-279, 2006.
  6. M. Garey and D. Johnson, "Computers and Intractability: A Guide to the Theory of NP-Completeness," W. H. Freeman, 1979.
  7. M. Pei, "Two Families of NP-Complete Problems," University of Waterloo, http://www.math.uwaterloo.ca/-mpei/mds.pdf, 2003.
  8. F. Grandoni, "A Note on the Complexity of Minimum Dominating Set," Journal of Discrete Algorithms, Vol. 4, No. 2, pp. 209-214, 2006. https://doi.org/10.1016/j.jda.2005.03.002
  9. Wikipedia, "Domatic Number," http://en.wikipedia.org/wiki/Domatic_number, 2012.
  10. S. T. Hedetniemi, "Fundamentals of Domination in Graphs: Introduction to Domination Theory," Marcel Dekker, Inc., 1998.
  11. P. Dankelmann and N. Calkin, "The Domatic Number of Regular Graphs," Department of Mathematical Sciences, Clemson University, 2008.
  12. H. Kaplan and R. Shamir, "The Domatic Number Problem on Some Perfect Graph Families," School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 1995.
  13. S. Pemmaraju and I. Pirwani, "Extending he Lifetime of Wireless Networks While Ensuring Coverage," Department of Computer Science, The University of Iowa, SIAM-DM, 2006.
  14. T. Moscibroda and R. Wattenhofer, "Maximizing the Lifetime of Dominating Sets," Computer Engineering and Networks Laboratory, ETH Zurich, Switerland, 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2005.
  15. B. L. Hartnell and D. F. Rall, "Connected Domatic Number in Planar Graphs," Czechoslovark Mathematical Journal, Vol. 51, No. 126, pp. 173-179, 2001. https://doi.org/10.1023/A:1013770108453
  16. K.W. Tsui, W. C-K. Yen, and C. Y. Tang, "On The Domatic Number of Bipartite Permutation Graphs," http://dspace.lib.fcu.edu.tw/bitstream/2377/10710/1/CE07NCS002007000076.pdf,NCS, 2007.
  17. J. Rothe, "Exact-Four-Colorability, Exact Domatic Number Problems, and the Boolean Hierarchy," Institut fur Informatik, Heinrich-Heine-Universitat Dusseldorf, 2005.
  18. N. Simjour, "A New Optimality Measure for Distance Dominating Sets," Master of Mathematics, Computer Science, University of Waterloo, 2006.
  19. T. Riege and J. Rothe, "Complexity of the Exact Domatic Number Problem and of the Exact Conveyer Flow Shop Problem," Heinrich-Heine-Universitat Dusseldorf, 2004.