DOI QR코드

DOI QR Code

Structure and apoptotic function of p73

  • Yoon, Mi-Kyung (Structural Biology & Nanopore Research Laboratory, Functional Genomics Research Center, KRIBB) ;
  • Ha, Ji-Hyang (Structural Biology & Nanopore Research Laboratory, Functional Genomics Research Center, KRIBB) ;
  • Lee, Min-Sung (Structural Biology & Nanopore Research Laboratory, Functional Genomics Research Center, KRIBB) ;
  • Chi, Seung-Wook (Structural Biology & Nanopore Research Laboratory, Functional Genomics Research Center, KRIBB)
  • Received : 2014.12.01
  • Published : 2015.02.28

Abstract

p73 is a structural and functional homologue of the p53 tumor suppressor protein. Like p53, p73 induces apoptosis and cell cycle arrest and transactivates p53-responsive genes, conferring its tumor suppressive activity. In addition, p73 has unique roles in neuronal development and differentiation. The importance of p73-induced apoptosis lies in its capability to substitute the pro-apoptotic activity of p53 in various human cancer cells in which p53 is mutated or inactive. Despite the great importance of p73-induced apoptosis in cancer therapy, little is known about the molecular basis of p73-induced apoptosis. In this review, we discuss the p73 structures reported to date, detailed structural comparisons between p73 and p53, and current understanding of the transcription-dependent and -independent mechanisms of p73-induced apoptosis.

Keywords

References

  1. Dötsch V, Bernassola F, Coutandin D, Candi E and Melino G (2010) p63 and p73, the ancestors of p53. Cold Spring Harb Perspect Biol 2, a004887 https://doi.org/10.1101/cshperspect.a004887
  2. Cutruzzola F, Avigliano L and Candi E (2014) p73 keeps metabolic control in balance. Cell Cycle 13, 179-180 https://doi.org/10.4161/cc.27301
  3. Inoue S, Tomasini R, Rufini A et al (2014) TAp73 is required for spermatogenesis and the maintenance of male fertility. Proc Natl Acad Sci U S A 111, 1843-1848 https://doi.org/10.1073/pnas.1323416111
  4. Murray-Zmijewski F, Lane DP and Bourdon JC (2006) p53/p63/p73 isoforms: an orchestra of isoforms to harmonise cell differentiation and response to stress. Cell Death Differ 13, 962-972 https://doi.org/10.1038/sj.cdd.4401914
  5. Melino G, De Laurenzi V and Vousden KH (2002) p73: Friend or foe in tumorigenesis. Nat Rev Cancer 2, 605-615 https://doi.org/10.1038/nrc861
  6. Munarriz E, Bano D, Sayan AE, Rossi M, Melino G and Nicotera P (2005) Calpain cleavage regulates the protein stability of p73. Biochem Biophys Res Commun 333, 954-960 https://doi.org/10.1016/j.bbrc.2005.05.188
  7. Asher G, Tsvetkov P, Kahana C and Shaul Y (2005) A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev 19, 316-321 https://doi.org/10.1101/gad.319905
  8. Rossi M, De Laurenzi V, Munarriz E et al (2005) The ubiquitin-protein ligase Itch regulates p73 stability. EMBO J 24, 836-848 https://doi.org/10.1038/sj.emboj.7600444
  9. Oberst A, Malatesta M, Aqeilan RI et al (2007) The Nedd4-binding partner 1 (N4BP1) protein is an inhibitor of the E3 ligase Itch. Proc Natl Acad Sci U S A 104, 11280-11285 https://doi.org/10.1073/pnas.0701773104
  10. Levy D, Adamovich Y, Reuven N and Shaul Y (2007) The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ 14, 743-751 https://doi.org/10.1038/sj.cdd.4402063
  11. Costanzo A, Merlo P, Pediconi N et al (2002) DNA damage-dependent acetylation of p73 dictates the selective activation of apoptotic target genes. Mol Cell 9, 175-186 https://doi.org/10.1016/S1097-2765(02)00431-8
  12. Mantovani F, Piazza S, Gostissa M et al (2004) Pin1 links the activities of c-Abl and p300 in regulating p73 function. Mol Cell 14, 625-636 https://doi.org/10.1016/j.molcel.2004.05.007
  13. Sayan BS, Yang AL, Conforti F et al (2010) Differential control of TAp73 and DeltaNp73 protein stability by the ring finger ubiquitin ligase PIR2. Proc Natl Acad Sci U S A 107, 12877-12882 https://doi.org/10.1073/pnas.0911828107
  14. Toh WH, Siddique MM, Boominathan L, Lin KW and Sabapathy K (2004) c-Jun regulates the stability and activity of the p53 homologue, p73. J Biol Chem 279, 44713-44722 https://doi.org/10.1074/jbc.M407672200
  15. Danovi SA, Rossi M, Gudmundsdottir K, Yuan M, Melino G and Basu S (2008) Yes-associated protein (YAP) is a critical mediator of c-Jun-dependent apoptosis. Cell Death Differ 15, 217-219 https://doi.org/10.1038/sj.cdd.4402226
  16. Dulloo I, Gopalan G, Melino G and Sabapathy K (2010) The antiapoptotic DeltaNp73 is degraded in a c-Jun-dependent manner upon genotoxic stress through the antizyme-mediated pathway. Proc Natl Acad Sci U S A 107, 4902-4907 https://doi.org/10.1073/pnas.0906782107
  17. Ramadan S, Terrinoni A, Catani MV et al (2005) p73 induces apoptosis by different mechanisms. Biochem Biophys Res Commun 331, 713-717 https://doi.org/10.1016/j.bbrc.2005.03.156
  18. Zaika AI, Slade N, Erster SH et al (2002) DeltaNp73, a dominant-negative inhibitor of wild-type p53 and TAp73, is up-regulated in human tumors. J Exp Med 196, 765-780 https://doi.org/10.1084/jem.20020179
  19. Chi SG, Chang SG, Lee SJ, Lee CH, Kim JI and Park JH (1999) Elevated and biallelic expression of p73 is associated withprogression of human bladder cancer. Cancer Res 59, 2791-2793
  20. Moll UM and Slade N (2004) p63 and p73: roles in development and tumor formation. Mol Cancer Res 2, 371-386
  21. Casciano I, Mazzocco K, Boni L et al (2002) Expression of DeltaNp73 is a molecular marker for adverse outcome in neuroblastoma patients. Cell Death Differ 9, 246-251 https://doi.org/10.1038/sj.cdd.4400993
  22. Jost CA, Marin MC and Kaelin WG Jr (1997) p73 is a simian [correction of human] p53-related protein that can induce apoptosis. Nature 389, 191-194 https://doi.org/10.1038/38298
  23. Miyashita T and Reed JC (1995) Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 80, 293-299 https://doi.org/10.1016/0092-8674(95)90513-8
  24. Nakano K and Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7, 683-694 https://doi.org/10.1016/S1097-2765(01)00214-3
  25. Oda E, Ohki R, Murasawa H et al (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288, 1053-1058 https://doi.org/10.1126/science.288.5468.1053
  26. Müller M, Wilder S, Bannasch D et al (1998) p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J Exp Med 188, 2033-2045 https://doi.org/10.1084/jem.188.11.2033
  27. Mihara M, Erster S, Zaika A et al (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11, 577-590 https://doi.org/10.1016/S1097-2765(03)00050-9
  28. Chipuk JE, Kuwana T, Bouchier-Hayes L et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303, 1010-1014 https://doi.org/10.1126/science.1092734
  29. Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD and Green DR (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309, 1732-1735 https://doi.org/10.1126/science.1114297
  30. Chi SW (2014) Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep 47, 167-172 https://doi.org/10.5483/BMBRep.2014.47.3.261
  31. Chipuk JE, Bouchier-Hayes L and Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13, 1396-1402 https://doi.org/10.1038/sj.cdd.4401963
  32. Ha JH, Shin JS, Yoon MK et al (2013) Dual-site interactions of p53 protein transactivation domain with anti-apoptotic Bcl-2 family proteins reveal a highly convergent mechanism of divergent p53 pathways. J Biol Chem 288, 7387-7398 https://doi.org/10.1074/jbc.M112.400754
  33. Ha JH, Won EY, Shin JS et al (2011) Molecular mimicry-based repositioning of nutlin-3 to anti-apoptotic Bcl-2 family proteins. J Am Chem Soc 133, 1244-1247 https://doi.org/10.1021/ja109521f
  34. Lee DH, Ha JH, Kim Y et al (2014) A Conserved Mechanism for Binding of p53 DNA-Binding Domain and Anti-Apoptotic Bcl-2 Family Proteins. Mol Cells 37, 264-269 https://doi.org/10.14348/molcells.2014.0001
  35. Bell S, Klein C, Muller L, Hansen S and Buchner J (2002) p53 contains large unstructured regions in its native state. J Mol Biol 322, 917-927 https://doi.org/10.1016/S0022-2836(02)00848-3
  36. Burge S, Teufel DP, Townsley FM, Freund SM, Bycroft M, Fersht AR (2009) Molecular basis of the interactions between the p73 N terminus and p300: effects on transactivation and modulation by phosphorylation. Proc Natl Acad Sci U S A 106, 3142-3147 https://doi.org/10.1073/pnas.0900383106
  37. Liu G, Xia T and Chen X (2003) The activation domains, the proline-rich domain, and the C-terminal basic domain in p53 are necessary for acetylation of histones on the proximal p21 promoter and interaction with p300/CREBbinding protein. J Biol Chem 278, 17557-17565 https://doi.org/10.1074/jbc.M210696200
  38. Shin JS, Ha JH, Lee DH et al (2015) Structural convergence of unstructured p53 family transactivation domains in MDM2 recognition. Cell Cycle 14, 533-543 https://doi.org/10.1080/15384101.2014.998056
  39. Kussie PH, Gorina S, Marechal V et al (1996) Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274, 948-953 https://doi.org/10.1126/science.274.5289.948
  40. Canning P, von Delft F and Bullock AN (2012) Structural basis for ASPP2 recognition by the tumor suppressor p73. J Mol Biol 423, 515-527 https://doi.org/10.1016/j.jmb.2012.08.005
  41. Ethayathulla AS, Tse PW and Monti P (2012) Structure of p73 DNA-binding domain tetramer modulates p73 transactivation. Proc Natl Acad Sci U S A 109, 6066-6071 https://doi.org/10.1073/pnas.1115463109
  42. Bullock AN, Henckel J and Fersht AR (2000) Quantitative analysis of residual folding and DNA binding in mutant p53 core domain: definition of mutant states for rescue in cancer therapy. Oncogene 19, 1245-1256 https://doi.org/10.1038/sj.onc.1203434
  43. Joerger AC, Rajagopalan S, Natan E, Veprintsev DB, Robinson CV and Fersht AR (2009) Structural evolution of p53, p63, and p73: implication for heterotetramer formation. Proc Natl Acad Sci U S A 106, 17705-17710 https://doi.org/10.1073/pnas.0905867106
  44. Chi SW, Ayed A and Arrowsmith CH (1999) Solution structure of a conserved C-terminal domain of p73 with structural homology to the SAM domain. EMBO J 18, 4438-4445 https://doi.org/10.1093/emboj/18.16.4438
  45. Thanos CD, Goodwill KE and Bowie JU (1999) Oligomeric structure of the human EphB2 receptor SAM domain. Science 283, 833-836 https://doi.org/10.1126/science.283.5403.833
  46. Stapleton D, Balan I, Pawson T and Sicheri F (1999) The crystal structure of an Eph receptor SAM domain reveals a mechanism for modular dimerization. Nat Struct Biol 6, 44-49 https://doi.org/10.1038/4917
  47. Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ and Green DR (2010) The BCL-2 family reunion. Mol Cell 37, 299- 310 https://doi.org/10.1016/j.molcel.2010.01.025
  48. Melino G, Bernassola F, Ranalli M et al (2004) p73 Induces apoptosis via PUMA transactivation and Bax mitochondrial translocation. J Biol Chem 279, 8076-8083 https://doi.org/10.1074/jbc.M307469200
  49. John K, Alla V, Meier C and Pützer BM (2011) GRAMD4 mimics p53 and mediates the apoptotic function of p73 at mitochondria. Cell Death Differ 18, 874-886 https://doi.org/10.1038/cdd.2010.153
  50. Deng Y and Wu X (2000) Peg3/Pw1 promotes p53-mediated apoptosis by inducing Bax translocation from cytosol to mitochondria. Proc Natl Acad Sci U S A 97, 12050-12055 https://doi.org/10.1073/pnas.97.22.12050
  51. Taebunpakul P, Sayan BS, Flinterman M et al (2012) Apoptin induces apoptosis by changing the equilibrium between the stability of TAp73 and DeltaNp73 isoforms through ubiquitin ligase PIR2. Apoptosis 17, 762-776 https://doi.org/10.1007/s10495-012-0720-7
  52. Schilling T, Schleithoff ES, Kairat A et al (2009) Active transcription of the human FAS/CD95/TNFRSF6 gene involves the p53 family. Biochem Biophys Res Commun 387, 399-404 https://doi.org/10.1016/j.bbrc.2009.07.063
  53. Terrasson J, Allart S, Martin H et al (2005) p73-dependent apoptosis through death receptor: impairment by human cytomegalovirus infection. Cancer Res 65, 2787-2794 https://doi.org/10.1158/0008-5472.CAN-04-2019
  54. Aqeilan RI, Pekarsky Y, Herrero JJ et al (2004) Functional association between Wwox tumor suppressor protein and p73, a p53 homolog. Proc Natl Acad Sci U S A 101, 4401-4406 https://doi.org/10.1073/pnas.0400805101
  55. Inoue T, Stuart J, Leno R and Maki CG (2002) Nuclear import and export signals in control of the p53-related protein p73. J Biol Chem 277, 15053-15060 https://doi.org/10.1074/jbc.M200248200
  56. Liu T, Roh SE, Woo JA, Ryu H and Kang DE (2013) Cooperative role of RanBP9 and P73 in mitochondriamediated apoptosis. Cell Death Dis 4, e476 https://doi.org/10.1038/cddis.2012.203
  57. Atabakhsh E, Bryce DM, Lefebvre KJ and Schild-Poulter C (2009) RanBPM has proapoptotic activities that regulate cell death pathways in response to DNA damage. Mol Cancer Res 7, 1962-1972 https://doi.org/10.1158/1541-7786.MCR-09-0098
  58. Kramer S, Ozaki T, Miyazaki K et al (2005) Protein stability and function of p73 are modulated by a physical interaction with RanBPM in mammalian cultured cells. Oncogene 24, 938-944 https://doi.org/10.1038/sj.onc.1208257
  59. Rao MA, Cheng H, Quayle AN, Nishitani H, Nelson CC and Rennie PS (2002) RanBPM, a nuclear protein that interacts with and regulates transcriptional activity of androgen receptor and glucocorticoid receptor. J Biol Chem 277, 48020-48027 https://doi.org/10.1074/jbc.M209741200
  60. Sayan AE, Sayan BS, Gogvadze V et al (2008) P73 and caspase-cleaved p73 fragments localize to mitochondria and augment TRAIL-induced apoptosis. Oncogene 27, 4363-4372 https://doi.org/10.1038/onc.2008.64
  61. Chang NS, Pratt N, Heath J et al (2001) Hyaluronidase induction of a WW domain-containing oxidoreductase that enhances tumor necrosis factor cytotoxicity. J Biol Chem 276, 3361-3370 https://doi.org/10.1074/jbc.M007140200

Cited by

  1. Role of the nucleus in apoptosis: signaling and execution vol.72, pp.23, 2015, https://doi.org/10.1007/s00018-015-2031-y
  2. The polymorphism G4C14-to-A4T14 in p73 gene may affect the susceptibility to male infertility with severe spermatogenesis impairment in Chinese population vol.204, 2016, https://doi.org/10.1016/j.ejogrb.2016.07.508
  3. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells vol.102, pp.2, 2017, https://doi.org/10.1016/j.yexmp.2017.03.006
  4. Sulforaphane-induced apoptosis in Xuanwei lung adenocarcinoma cell line XWLC-05 vol.8, pp.1, 2017, https://doi.org/10.1111/1759-7714.12396
  5. Mutant p53 Protein and the Hippo Transducers YAP and TAZ: A Critical Oncogenic Node in Human Cancers vol.18, pp.5, 2017, https://doi.org/10.3390/ijms18050961
  6. Effect of low doses of actinomycin D on neuroblastoma cell lines vol.15, pp.1, 2016, https://doi.org/10.1186/s12943-015-0489-8
  7. The ovarian DNA damage repair response is induced prior to phosphoramide mustard-induced follicle depletion, and ataxia telangiectasia mutated inhibition prevents PM-induced follicle depletion vol.292, 2016, https://doi.org/10.1016/j.taap.2015.12.010
  8. Metal chelator TPEN selectively induces apoptosis in K562 cells through reactive oxygen species signaling mechanism: implications for chronic myeloid leukemia vol.30, pp.3, 2017, https://doi.org/10.1007/s10534-017-0015-0
  9. Ubiquitination-dependent degradation of p73 by the mitochondrial E3 ubiquitin ligase Hades vol.467, pp.2, 2015, https://doi.org/10.1016/j.bbrc.2015.09.163
  10. Curcumol triggers apoptosis of p53 mutant triple-negative human breast cancer MDA-MB 231 cells via activation of p73 and PUMA vol.14, pp.1, 2017, https://doi.org/10.3892/ol.2017.6273
  11. miR-504 promotes tumour growth and metastasis in human osteosarcoma by targeting TP53INP1 vol.38, pp.5, 2017, https://doi.org/10.3892/or.2017.5983
  12. Inhibitory effect and mechanism of exogenous mammalian sterile 20-like kinase 1 on the growth of human colorectal cancer vol.13, pp.4, 2017, https://doi.org/10.3892/ol.2017.5786
  13. Effects of equibiaxial mechanical stretch on extracellular matrix-related gene expression in human calvarial osteoblasts pp.09098836, 2018, https://doi.org/10.1111/eos.12595
  14. Roles of the MST1-JNK signaling pathway in apoptosis of colorectal cancer cells induced by Taurine vol.13, pp.1, 2018, https://doi.org/10.1080/19932820.2018.1500346
  15. Resting T cells are hypersensitive to DNA damage due to defective DNA repair pathway vol.9, pp.6, 2018, https://doi.org/10.1038/s41419-018-0649-z
  16. Markers of Oral Lichen Planus Malignant Transformation vol.2018, pp.1875-8630, 2018, https://doi.org/10.1155/2018/1959506
  17. vol.293, pp.51, 2018, https://doi.org/10.1074/jbc.RA118.003061