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Abstract—The Monte-Carlo (MC) technique is very 
efficient solution for statistical problem. Various MC 
methods can easily be applied to statistical circuit 
performance analysis. Recently, as the number of 
process parameters and their impact, has increasingly 
affected circuit performance, a sufficient sample size 
is required in order to consider high dimensionality, 
profound nonlinearity, and stringent accuracy 
requirements. Also, it is important to identify the 
performance of circuit as soon as possible. In this 
paper, Fast MC method is proposed for efficient 
analysis of circuit performance. The proposed method 
analyzes performance using enhanced-precision Latin 
Hypercube Sampling Monte Carlo (LHSMC). To 
increase the accuracy of the analysis, we calculate the 
effective dimension for the low discrepancy value on 
critical parameters. This will guarantee a robust 
input vector for the critical parameters. Using a 90nm 
process parameter and OP-AMP, we verified the 
accuracy and reliability of the proposed method in 
comparison with the standard MC, LHS and Quasi 
Monte Carlo (QMC).    
 
Index Terms—Fast Monte Carlo, latin hypercube 
sampling, low discrepancy sequence, performance 
analysis, yield analysis   

I. INTRODUCTION 

As the CMOS device becomes smaller, statistical 

variability of process parameters on circuit increases. 
There are two methods for considering this characteristic 
of circuits. The first method is an analytical method that 
can obtain statistical or deterministic results using given 
constraints [1]. However, it is difficult to predict circuit 
characteristics such as complex statistics, high 
dimensionality, and expensive performance evaluation. 
We cannot identify various performance of circuit, since 
it is applied to a specific target. The second method is a 
Monte-Carlo (MC) method, which extracts the input 
vector for simulation in process variation space and 
represents the performance of circuit as a statistical 
distribution. In MC simulation, when we predict the 
performance of circuit by process parameter, we can 
easily consider the characteristics of non-standard 
distribution and high dimensionality in process variation 
space [2]. In addition time-to-market (TTM) and turn-
around-time (TAT) can respond quickly.   

However, we have to extract sufficient samples in 
order to confirm the accuracy of the analysis. Also, there 
are some problems with the high runtime cost. The 
simple MC technique is known to have low efficiency. 
Variance reduction methods can be employed to increase 
its efficiency. These techniques, which predict parametric 
yield and timing analysis, have been studied in [3-6]. In 
[3], a Latin Hypercube Sampling (LHS) approach for 
parametric yield estimation is proposed. In [4], mixture 
importance sampling for statistical SRAM design and 
analysis is proposed. The approach in [5] uses the control 
variates technique in conjunction with importance 
sampling for timing yield estimation. However, while 
several approaches are reviewed, no results are presented. 
In [6], the authors propose to use Quasi Monte Carlo 
(QMC) analysis for yield estimation. It is not clear how 
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this approach can be extended to systems with a large 
number of dimensions, which is often the case with 
process variation. Also, optimized QMC for accurate 
analysis has been studied in [7]. [7] defined a measure of 
2-D uniformity and proposed a search algorithm to find a 
set of initial value with a high defined uniformity. The 
drawback to their technique is that the number of 
samples and dimension must be known in advance. 
Moreover, the technique re-produces Sobol sequence and 
re-evaluates their defined discrepancy measure in each 
iteration (after an initial value update), substantially 
increasing the runtime for a large number of samples and 
dimensions. 

In this paper, the Fast MC method is proposed for an 
accurate analysis of circuit performance that considers 
high dimension problem and 2-D uniformity on critical 
parameters. Section II describes the process variation and 
variance reduction methods. We present overall flow of 
our proposed Fast-MC, the sample extraction method, 
and pairing method in Section III. Section IV presents the 
results in detail, while the concluding remarks are 
provided in Section V. 

II. BACKGROUND AND RELATED WORK 

In this section, we briefly describe the process 
variation and standard techniques for variance reduction 
of MC, which include QMC techniques and LHS. 

 
1. Process Variation 

 
Examples of variation during the manufacturing 

process include shifts in the values of parameter such as 
the effective channel length (Leff), the oxide thickness 
(tox), and the transistor width (w). Process variations can 
be classified into the following categories, depending on 
their physical range on a die or wafer [8]:  

• Die-to-die (D2D) variations correspond to changes 

from on die to another (Fig. 1(a)). 

• Within-die (WID) variations correspond to variability 

within a single die (Fig. 1(b)). 
 
D2D variations affect all the devices on the same chip 

in the same way; for example, they can cause the 
transistor gate lengths of devices on the same chip to all 

be larger or all be smaller than the nominal WID 
variations, however, these may affect different devices 
differently on the same chip; for example, they could 
cause some devices to have smaller transistor gate 
lengths and others to have larger transistor gate lengths 
than the nominal one. These D2D variations have been a 
longstanding design issue, and for several decades, 
designers have been striving to make their circuits robust 
under the unpredictability of such variations. This has 
typically been achieved by corner-based analysis that 
considers the worst variation. In nanometer technologies, 
WID variations have become significant and can no 
longer be ignored. Corner-based methods are adequate in 
cases where all variations are D2D, and no WID 
variations are seen. MC can be considered a high 
dimensionality problem with increasing WID variations 
during circuit performance analysis. 

 
2. Variance Reduction Method 

 
Variance reduction method can maintain accuracy 

while reducing the N’ from N sample size in MC 
simulation as shown in Fig. 2. We briefly describe LHS 
and QMC  

 
A. Quasi Monte-Carlo   
The standard MC method addresses the problem of 

approximating the integral of a function f(x) over the s-
dimensional hypercube CS = [0,1)S, where x represents a 
point in an s-dimensional space. The MC estimate of the 

 

Fig. 1. Types of variations. 
 

 

Fig. 2. Fast MC for circuit performance analysis. 
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integral f  is given by the arithmetic mean of fi, which 

are values of the function f(x) evaluated at n samples 
distributed throughout the hypercube. The Koksma-
Hlawka inequality relates the error bound of a method to 
numerically estimate an integral using a sequence of 
samples to a mathematical measure of uniformity for the 
distribution of the points, which is called discrepancy [9]. 
This inequality suggests that we should use a sequence 
with the smallest possible discrepancy for evaluating the 
function in order to achieve the smallest possible error 
bound. Such sequence constructed to reduce discrepancy 
is called LDSs (low discrepancy sequences). QMC 
techniques are characterized by their use of LDSs to 
generate samples. LDSs are deterministic sequence, in 
other words, there is no randomness in their generation 
such as Fig. 3. Intuitively these sequences are well 
dispersed through the domain of the function, 
minimizing any gap and/or clustering of points. Sobol 
[10] and Faure and Niederreiter [6] are LDSs that have 
been studied extensively. In this work, we consider Sobol 
sequences, which are known to be simple to construct 
and more resistant to the pattern dependency issue, in 
comparison with other sequences. However, LDSs are 
imperfect, and as the number of dimensions in the 
problem increases, the uniformity is degraded. It can lead 
to large errors in the integration. 

 
B. Latin Hypercube Sampling 
LHS is a technique in variance reduction which deals 

with multidimensional system [11]. This technique tries 
to sample each variable involved uniformly by dividing 
the variable into equal probability bins. The samples 
from bins in variables are combined across dimensions to 
obtain faster convergence than random sampling as 
shown in Fig. 4. This is in contrast with taking all 
permutations of the bins across variables to define strata, 
and then sampling within each stratum as in stratified 
sampling [12]. This means that LHS can deal with large 

dimensions, however with a moderate rate of 
convergence compared to full stratification. Each random 
variable is divided into equal probability bins. One 
sample is generated within each bin. Such samples are 
combined across variables to obtain LHS. This is the 
procedure to obtain k samples, where k is the number of 
bins per variable. To obtain mk number of samples, we 
repeat the LHS procedure m times.  

III. PROPOSED FAST MONTE CARLO 

The objective of the proposed Fast MC is an exact 
performance analysis of the circuits. It minimizes the loss 
of analysis accuracy by decreasing the number of 
samples and increasing dimensions that are applied to the 
simulation. In addition it produces reliable results without 
depending on the number of executions. In this paper, we 
propose a Fast MC structure, as shown in Fig. 5. 

Proposed system consists of a sampling method for 
extracting the process parameter information, and a 
pairing method for generating the input vector for the 
simulation using the extracted samples. To improve the 
accuracy, pairing method calculates the number of 
effective dimensions using the sample size applied in the 
simulation and applying the critical parameter that 
impacts the performance of the circuit. Further 
description will be provided in the section of pairing 
method. Finally, MC simulation is performed using the 

 

Fig. 3. Generate sample using LDS. 
 

 

(a) Sampling of a variable in equal probability bins 
 

 

(b) Forming triplets by randomly combining individual samples 

Fig. 4. LHS sampling method. 
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generated input vector, and the circuit’s yield and 
performance are analyzed. 

 
1. Sample Extraction of Process Parameters  

 
In MC method, the number of samples needed for 

simulation will be extracted based on process parameter 
information. This is a method that considers only the 
accuracy of sample extracted from one parameter 
(considering 1-dimension). To generate an input vector 
for MC simulation, we have to pair extracted samples, 
and also evaluate pairing result of samples and 
uniformity of 2-dimension in the valuation basis 
(considering 2-dimension). 

In this section, we will explain the sample extraction 
method for given process parameter. The sample 
extraction of process parameters is needed to consider 
both 1-D and 2-D, as shown in Fig. 6. 

We have to extract samples that exactly reflect the 
information of parameter variation as shown Fig. 6(a) 
and reflect the corner value through the sample pair, as 
shown in Fig. 6(b). We introduce the theoretical error 
rate of each sampling method [13] for the above property. 
Using standard MC method, we typically compute some 
metric like yield, or 99-th percentile delay. Such a 
computation is essentially a numerical approximation of 
some integral as follows:  

 

 1( ) ,     ( , ),S sC
Q f x dx x x x= =ò L        (1) 

 

where [0,1)S SC =  is the s-dimensional unit (number of 

process parameters), For example, if we are estimating 
the mean of the worst circuit delay, f is the circuit delay 
as a function of the statistical parameters of all the 
transistors. The numerical estimate computed from an n-
point MC is 

 

 1
1

( ),n
n ii

Q n f x-
=

= å              (2) 
 
In general, xi are n independent and identically 

distributed samples drawn from the s-dimensional 

uniform distribution U [0,1)s . Process variables with 

different variable ranges, arbitrary statistical distributions, 
arbitrary nonlinearity, etc., can always be transformed 
into this canonical integral form (i.e., these can always be 
included in our function f without any loss of generality). 
Fig. 7. shows integration method in MC. Fig. 7(a) 
represents timing yield at 99 percentile point using 
formula (1). Fig. 7(b). shows MC integration using 
expectation method as formula (2). 

 

Fig. 5. Overall flow of proposed fast MC.  
 

 

(b) 

Fig. 6. Importance of sample extraction. 
 

 

             (a)                    (b) 

Fig. 7. Monte-Carlo integration method. 
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Suppose we use MC to estimate the standard deviation 
of the worst circuit delay in the presence of presence of 
process variations. Different n-point MC runs will give 
us slightly different estimates. It is well known in [14] as 
the convergence properties of the standard MC. If f has 
finite variance 

 

 2 2
[0,1)

( ) [ ( ) ]sf f x Q dxs = -ò          (3) 
 

where 2 ( )fs  is the variance of the underlying 

integrand f in (1). The mean square error of the MC 
integral approximation is given as 

 

 2 2[( ) ] ( ) /nE Q Q f ns- =           (4) 
 
Thus, the expected MC error is O(n-1/2). The advantage 

of standard MC is that this error does not depend on the 
dimensionality. 

LHS ensures high uniformity of the point set along any 
dimension. This, however, does not guarantee similar 
uniformity in two (or more) dimensional projections of 
the point set, because the variance reduction property of 
LHS is given as 

 

 1 1 1 { }1
( ) ( ) ( ),     ( ) ( ),s

i ii
f x f x f x f x f x> =

= + =å    (5) 
 

where f{i}(xi) is that part of f which depends exclusively 
on the i-th variable. Thus, f1 is the purely one-
dimensional part of f, and f>1 is the purely multi-
dimensional part of f. The variance of the LHS estimate 
is 

 

 2 1 2 1
1 ( ),LHS n o ns s- -
>= +           (6) 

 

where 2
1s >  is the variance of f>1, which is similar to 

2 ( )fs  for f. If f is only one-dimensional, we get large 

variance reduction and lower errors than MC, because of 
O(n-1).   

QMC is specifically designed to place sample points as 
uniformly as possible. The QMC algorithm for the 
evaluation of the integral has a form similar to formula (2). 

 

 1 1
1

( ),    ( , ),N n
n i i i ii

Q n f q q q q-
=

= =å L     (7) 
 

where qi is a set of LDS points uniformly distributed in a 
unit hypercube. The Koksma-Hlawka inequality [7] gives 
an upper bound for the QMC integration error. 

 

 2 ( ) ,NV f Ds £                (8) 
 

where V(f) is the variation of f(x) and DN is the sample 
discrepancy. After DN is applied, error rate of QMC is as 
below [11]. 
 

 2 1( log )sO n ns -=             (9) 
 
The asymptotic integration error rate of QMC is O(n-1).  
We can confirm that the more effective ways in 1-D 

are LHS and QMC through integration error rate of 
sampling method. In order to verify the theoretical error 
rate, we carried out the following two experiments. First, 
we confirmed the accuracy of the sample extraction in 
each method. Fig. 8 shows the error rate for each 
variance by ten parameters sample extraction (sample 
size: 100) for normal distribution, in which the mean was 
0 and the standard deviation was 1.  

We can see that standard sampling is not valid for Fast 
MC, because its accuracy rate is not steady in certain 
parameters such as in parameter 4,5,8,9, and 10. 

Second, we identified the coverage of the extracted 
samples. QMC generates samples using deterministic 
LDSs. When samples are generated deterministically, the 
mean and variance are accurately generated. However, it 
may have a limitation in term of given parameter 
information. Fig. 9 shows the extracted sample's max and 
min parameter value (dimension: 100), in which the 
mean was 0 and standard deviation was 1. It shows that 
LDSs have a deterministic min/max value on given 
parameter information and that there can be problem 
with the generation of the corner value. 

As we can see from Figs. 8 and 9, LHS is the most 

 

Fig. 8. Error rate of each variation on each method. 
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efficient method for extracting samples in 1-D. However, 
in formula (6), we can observe that LHS cannot 
guarantee accuracy in multi-dimension. To overcome this 
limitation, we will describe pairing method that considers 
multi-dimension in the next section. 

 
2. Pairing Method for 2-D Uniformity 

 
In the MC simulation for circuit performance analysis, 

if the S process parameter and N sample size are applied, 
it produces a pairing result using the extracted sample, as 
shown in Fig. 10. When S number of parameter is 
applied to MC simulation, S(S-1)/2 pairing results are 
generated. In order to reduce the integration error of MC, 
the low discrepancy value of the pairing results is fairly 
important. 

However, it is not easy to expect low discrepancy in a 

pairing that uses LHS. In the LDSs that be used in QMC, 
it can keep uniformity 2-D projection at initial several 
dimensions. However, pattern dependency can occur 
during sample pairing at higher dimensions. Fig. 11 
shows the pairing results for various methods (sample 
size: 1000).  

As can be seen from a) and b) in Fig. 11, we cannot 
say that pairing results of LHS have greater uniformity 
than that of random method in 2-D projection. In c), in 
the case of LDSs, we can identify the highest uniformity 
in 2-D projection. However, as the dimensions increased, 
the pattern dependency in 2-D projection increased, such 
as d) in Fig. 11. This is the main cause of the increased 
integration errors in MC. For example, a set of 10K 
Sobol’s points in 100 dimensions will have well 
distributed points in dimensions 1-10 and undesirable 
patterns in dimensions 91-100 [13]. 

By considering these characteristics, this paper 
calculates the number of dimensions that can represent 
the strength of LDSs according to the number of samples, 
and these dimensions apply to the extracted samples of 
the critical parameter. Therefore, we have to determine 
the effective dimension that can reflect the effect of 
LDSs. This can be calculated using the discrepancy value. 
Determining dimension of LDSs that may have a smaller 
discrepancy than LHS is limited. In other words, there 
are various definitions of discrepancy, and these are 
relative values.  

We solved this problem by relating relative values 
with computed discrepancy, as [15] represented 
computed discrepancy using generated samples, as 
follows: 

 

Fig. 9. Generated min/max value on LHS and QMC. 
 
 

 

Fig. 10. Pairing method for circuit analysis. 
 

 

Fig. 11. Pairing result on each method. 
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where N is the sample size, k is the axis and x is the 
generated sample. Using formula (10), we can build the 
relation between the LHS and LDSs theoretical 
discrepancy value and define the effective dimension that 
can be applied to LDS as follows: 
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where S is the dimension and n is the sample size. We set 
the upper bound on the discrepancy of the LDSs using 
LHS's average discrepancy.  

First, we can build the relation between the computed 
discrepancy and the theoretical square discrepancy of 
LHS. In [16], the square discrepancy formula was 
represented as follows:  

 

 
2

2 2 2 2
2

( ( ))
13 13 1 1 5 1 13 1( ) 2( ) ( ) (1 )( ) ,
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theoreticalE L N

N N NN

=

- + + + - -
  

  (12) 
 

where N is the sample number with even values . We can 
express formula in the form (13) as follows: 

 

 2 2( ( )) ( ( )) ,LHS theoreticalE L x E L Na» ×      (13) 
 

where a  can represent the coefficient value for the 
sample size and confirm the computed discrepancy using 
the average square discrepancy. Fig. 12 shows the 
discrepancy according to sample size, and it is the result 
of Eq. (13). We can confirm that the difference between 
two values has an error rate of about 5%.  

Second, we can build the relation between the 
theoretical and computed discrepancy of LDS. In this 
work, we used the Sobol sequence generation algorithm, 
which is introduced in [17]. Formula (14) is defined as 
the theoretical discrepancy of LDS. 

 ( ) log( ) ,
S

d
n

nD c s
n

£           (14) 

 

where c(s) is a constant depending only on dimension s, s 
is the dimension and n is the sample size. We can express 
the formula from formula (10) and (14) as follows: 

 

 2( ( )) ( )sobol nE L x s Db» ×          (15) 
 
By using formula (15), coefficient  can be extracted. 

As LDS’s discrepancy is dependent on dimension, 
according to formula (14), there is a correlation between  
and dimension as well. After extracting  of specific 
dimension, it is stored in a table. The others can be 
gained using interpolation. Fig. 13 shows the discrepancy 
according to the sample size and dimension, and it is the 
result of Eq. (15), and error rate is about 7%. 

Therefore, we can determine the dimension to apply to 
LDS using formula (13) and (15) as below. 

 

 2 2

2

( ( )) ( ( ))

( ( )) ( ) ( ) ,
LHS sobol

theoretical N theoretical

E L x E L x

E L N s Da b

³

Þ × ³ ×
  (16) 

 
where a  and b  are calculated as the coefficients of 
each method. We can obtain the effective dimension that 

 

Fig. 12. Relation with computed discrepancy on LHS. 
 

 

Fig. 13. Relation with computed discrepancy on QMC. 
 



108 EUN-SUK PARK et al : ENHANCED-PRECISION LHSMC OF ELECTRICAL CIRCUIT CONSIDERING LOW DISCREPANCY 

 

satisfies the above condition using the sample size.  
Fig. 14 shows the calculated dimension using formula 

(16). The number of dimensions to apply to LDS 
increases, when the number of samples is not large 
enough. However, when the number of samples is large, 
an increase in dimensions will be small. This 
phenomenon is due to the fact that the discrepancy of 
LHS is not affected by dimension and will be sufficiently 
small as the number of samples grows.  

Pair sets using effective dimensions from the above 
method can sometimes have a higher discrepancy than 
the average discrepancy of LHS. In Fig. 15, the 
discrepancy distribution of LHS is uniform, but QMC 
has average discrepancy by good pairing results and bad 
pairing results.  

To improve the effect of low discrepancy in the 
pairing result by LDS, we have to increase the frequency 
in the good pairing part and decrease or remove 
frequency in bad pairing part. In [7, 18], by controlling 
the initial values of the Sobol sequence, methods are 
suggested for optimizing the discrepancy of LDS. In our 
method, using [18], we optimize the discrepancy of the 
dimension paired using the Sobol sequence. We have a 
low runtime cost, since the number of dimensions that 
should be optimized is not large. In the case of critical 
parameters, the samples are paired using LDSs and the 

others are paired by LHS. 
Analysis of the critical parameters that will apply to 

the pairing method will be done with the following two 
methods. First, the designer selects the parameters that 
have the most effect on the relevant performance metrics 
and assigns these to the lower coordinates of the MC. 
Second, the global sensitivity of the metric to circuit 
parameters is used a measure of their importance, and the 
parameters are sorted in decreasing order of importance. 
This sorted list is then mapped to the corresponding 
pairing using LDS. 

The measure of sensitivity we use is the absolute value 
of the Spearman’s Rank Correlation Coefficient [19]. 
Supposing that Ri and Si are the ranks of corresponding 
values of a parameter and a metric, the their rank 
correlation is given as 

  

 S
2 2

( )( )
r

( ) ( )

i ii

i ii i

R R S S

R R S S

- -
=

- -

å
å å

     (17) 

 
The rank correlation can be computed by first running 

a smaller MC run [6]. Finally, the input vectors are 
generated for fast MC simulation, as shown in Fig. 16. N 
is the sample size, i is the number of calculated effective 
dimensions, and S is the number of process parameter. 

IV. EXPERIMENTAL RESULTS 

In this section, we compare the performance of our 
Fast-MC against the performance of MC, LHS, and 
QMC. First, we make some observations about various 

 

Fig. 14. Calculated dimension depend on sample size. 
 

 

Fig. 15. The result of LDS and LHS discrepancy. 

 

 

  (a) Effective dimension for CP    (b) Other dimension 

Fig. 16. Pairing result considering critical parameters.  
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MCs and our Fast MC implementations. 
• A Linear Congruential Generator (LCG) [20] was 

used to generate the pseudo random sequence for 
MC because of its widespread popularity. 
• Latin Hyper Cube method [12] was implemented for 

statistic 
• The sobol sequence generation algorithm [17] was 

used to generate LDS for QMC. For optimization of 
effective dimensions, the initial value of each 
dimension was chosen by simulated annealing [18].   

 
Now we describe the test cases and the experiments. 

Fig. 17 shows the discrepancy distribution on the 
effective dimension. N denotes the number of sample, 
and D refers to the effective dimension corresponding to 
the critical parameters. 

In comparison with the discrepancy distribution of the 
LHS pairing results, it can be confirmed that the 
discrepancy distribution of the pairing results of applying 
the LDS’s will now have a lower discrepancy. Even 
though a distribution  that has 0.02 discrepancy exists in 
the condition of N:300 and D:22, LHS method provides 
more than 70 pair sets that have about 0.02 discrepancy 
value , while there are only 13 pair sets using the method 
that we suggested. The accuracy and reliability of the 
proposed Fast MC can be improved by considering the 
critical parameters that can have a significant impact in 
the performance of the circuit.  

The proposed Fast MC is implemented in C++ 

language and the input vector that was generated using 
the configuration file, as shown in Fig. 18, was simulated 
using Hspice. We measured the AC and DC for OP-AMP 
using 90 nm model library, and we applied 75 process 
parameters (dimension) as shown Fig. 19.  

As shown in Fig. 19, the simulated OP-AMP consist of 
13 PMOSs and 11 NMOSs, and it includes three local 
variations such as threshold voltage, mobility, and gate 
oxide thickness and global variations such as gate length, 
gate width, gate oxide thickness consists of 75 
dimensions for simulation. Table 1 shows operating 
parameters for OP-AMP simulation. 

Fig. 20 shows measure of gain in OP-AMP, and it also 

 

Fig. 17. Discrepancy distributions on the effective dimension. 
 

 

Fig. 18. Configuration file for the proposed Fast MC. 
 

 

Fig. 19. OP-AMP for experimental result. 
 

Table 1. Operating parameters 
Operating Parameter Nominal Unit 

Supply Voltage 1.1 V 
Temperature 27 ‘C 
Bias Current 10 uA 
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shows the absolute value of rank correlation about 
process parameters consisting of dimension. The 
variables are sorted according to decreasing importance. 
This is now the order they will be mapped to the 
effective dimension for sample pairing. When 
considering 200-sample size, 20 effective dimensions are 
generated, and sample pairing applied to LDSs are 
implemented based on sorted critical parameter. Fail 
analysis can be done using the fail index number and the 
sample size. 

Table 2 shows the simulation results of OP-AMP. The 
methods presented above were used in ten simulations in 
same condition, and they were compared with the 
standard MC (sample size: 10000). Then we calculated 
the average error rate of variance. As shown in the table 
above, we can identify that the method proposed in this 
paper has the more low error rate result for performance 

analysis, and shows that all has under about 5% error rate 
except for PSRR (power supply rejection ratio). In PSRR 
case, since standard deviation value is very smaller than 
mean value, error rate may increase in comparison with 
other performances. However, we can identify that it has 
lower error rate than other methods. In error rate case in 
Table 2, it is possible that each method has similar error 
rates for some performance, because we use average 
error rate occurred during the simulations. In other words, 
both high and low error rate can occur as an outcome of 
random pairing result in case of random and LHS method 
is used.  

For this phenomenon, we can identify each method's 
reliability by confirming the fluctuation in the variance 
error rate. Fig. 22 shows the average fluctuation width of 
variation error rate of GAIN and UFG for LHS, 
RANDOM and OURS. 

The numerical values of each point show the 
maximum error rates that occur corresponding to the 
sample size. Generally, we can identify that range of 
fluctuation of variance decreases with an increase in the 
number of sples. If range of fluctuation of variance is 
small, this means that Fast MC’s reliability is high. In 
proposed Fast MC, regardless of the number of samples, 
we can see that the range of fluctuation of variance is 
within about 2%, and it has a low value than that of other 
method, in term of the max error rate.  

Fig. 23 shows error rate of PM and UFG's standard 

 

Fig. 20. Critical parameter analysis for OP-AMP gain (sample 
size :200). 

 

 

Fig. 21. Simulation result and performance analysis. 
 

 

Fig. 22. Fluctuation of error rate as sample growing. 
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deviation according to the sample size in OP-AMP.  
We define the confidence level as the 2% error rate of 

a MC that used as reference method, and we can see that 
the proposed Fast MC, with a smaller sample size than 
the conventional Fast MC, could approach the 
confidence level. 

 

V. CONCLUSIONS 

This paper proposed an effective Fast MC system for 
performance analysis of a circuit. The system 
implements a sampling method and pairing method, as 
we should consider sample extraction in 1-D and sample 
projection in 2-D. To improve the 2-D projection of 
critical parameters that have a significant effect on circuit 
performance, the effective dimension was applied using 
the sample size that was used on simulation. The pairing 
results of critical parameters could reduce the integration 
error rate of MC by maintaining a low discrepancy. 
Compared to the LHS and QMC method that were used 
in conventional circuit analysis, it reduces the 
dependence on sample size and increases the dimensions. 
It can be effectively applied to aging analysis and 
statistical performance analysis of a circuit. Calculating 
the effective dimension using average discrepancy can 
reduce the optimization cost of LDS. However, this may 
not guarantee the best performance. The performance of 
the proposed Fast MC can be improved by applying to 
the optimal LDS's discrepancy for effective dimension. 

Table 2. AC and DC performance analysis of OP-AMP 
AC (Alternating Current) : (Variance error rate of standard MC compare with reference MC) 

N : 100 GAIN UGF PM CMRR PSRR N : 200 GAIN UGF PM CMRR PSRR 
LHS 8.18% 6.59% 4.09% 5.34% 8.68% LHS 4.15% 3.17% 3.99% 4.47% 7.63% 

RANDOM 6.39% 4.86% 4.63% 6.93% 15.57% RANDOM 4.56% 3.75% 2.47% 3.64% 4.66% 
QMC 0.84% 11.34% 9.52% 5.97% 9.85% QMC 6.82% 2.04% 4.27% 0.81% 24.48% 
OURS 4.91% 2.40% 1.77% 4.83% 8.03% OURS 1.78% 1.06% 0.84% 3.00% 0.96% 
N : 300 GAIN UGF PM CMRR PSRR N : 400 GAIN UGF PM CMRR PSRR 

LHS 3.15% 2.64% 3.54% 4.41% 7.49% LHS 2.83% 2.16% 1.92% 4.32% 4.95% 
RANDOM 3.19% 4.38% 3.58% 3.85% 5.46% RANDOM 3.00% 3.53% 2.54% 2.17% 7.92% 

QMC 3.19% 0.81% 6.63% 2.69% 11.97% QMC 1.21% 0.76% 3.47% 0.91% 5.57% 
OURS 1.77% 2.75% 1.70% 2.84% 6.59% OURS 1.99% 0.82% 0.52% 1.75% 5.21% 

DC (Direct Current) 
N : 100 OFFSET OUTPUT_RANGE POWER N : 200 OFFSET OUTPUT_RANGE POWER 

LHS 4.51% 8.34% 5.60% LHS 4.16% 4.89% 3.82% 
RANDOM 5.55% 4.33% 5.46% RANDOM 3.16% 3.94% 3.69% 

QMC 2.39% 23.51% 6.48% QMC 1.23% 3.69% 2.75% 
OURS 4.34% 2.12% 5.83% OURS 3.81% 2.22% 3.18% 
N : 300 OFFSET OUTPUT_RANGE POWER N : 400 OFFSET OUTPUT_RANGE POWER 

LHS 3.02% 4.97% 4.01% LHS 3.14% 3.58% 3.15% 
RANDOM 3.37% 4.45% 4.12% RANDOM 2.66% 4.03% 3.69% 

QMC 9.61% 3.84% 8.92% QMC 2.55% 5.47% 3.91% 
OURS 2.36% 0.61% 3.83% OURS 1.85% 0.76% 1.86% 

 
 

 

Fig. 23. Error rate of Stdev. on OP-AMP performance. 
 



112 EUN-SUK PARK et al : ENHANCED-PRECISION LHSMC OF ELECTRICAL CIRCUIT CONSIDERING LOW DISCREPANCY 

 

REFERENCES 

[1] M.Mani, A.Devgan, M.Orshansky, “An Efficient 
Algorithm for Statistical Minimization of Total 
Power under Timing Yield Constraints”, 
IEEE/ACM DAC, 2005. 

[2] K.Chopra, et al., ”Parametric Yield Maximization 
using Gate Sizing based on Efficient Statistical 
Power and Delay Gradient Computation”, Proc. 
International conference on Computer Aided 
Design, pp. 1023~1028, 2005. 

[3] M. Keramat and R. Kielbasa, “Worst Case 
Efficiency of LHSMC Yield Estimator of Electrical 
Circuits,” Proc. ISCAS, v.3, pp. 1660 – 1663, 1997. 

[4] R. Kanj, R. Joshi, and S. Nassif, “Mixture 
Important Sampling and Its Application to the 
Analysis of SRAM Design in the Presence of Rare 
Failure Events,” Proc. Design Automation 
Conference, pp. 69-72, 2006. 

[5] S. Tasiran and A. Demir, “Smart Monte Carlo for 
yield Estimation,” Proc. ACM/IEEE TAU, 2006. 

[6] A. Singhee and R.A.Rutenbar, “From Finance Flip 
Flops : A Study of Fast Quasi Monte Carlo Method 
from Computational Finance Applied to Statistical 
Circuit Analysis,” Proc. ISQED, pp 685-692, 2007. 

[7] J. Cheng and M. J. Druzdzel, “Computational 
Investigation of Low Discrepancy Sequence in 
Simulation Algorithms for Bayesian Networks,” 
Proc. 16th Annual Conference on Uncertainty in 
Artifcial Intelligence, pp. 7281. 2000.  

[8] Xin Li, Jiayong Le, and Lawrence T. Pileggi, 
“Statistical Performance Modeling and Optimization,” 
Now published Inc., Hanover, MA, USA, 2007. 

[9] E. Hlawka, “Functionen von beschrankter 
Variation in der Theorie der Gleichverteilung,” Ann. 
Mat, Pura Appl. 54, pp 325-333., 1961. 

[10] I.M.Sobol, “The Distribution of Points in a Cube 
and the Approximate Evaluation of Integrals,” 
USSR Comp. Math and Math. Phys., 7(4), pp. 86-
112, 1967. 

[11] M. Stein, “Large Sample Properties of Simulations 
Using Latin Hypercube Sampling,” Technometrics, 
29, pp 143-151, 1987. 

[12] R.Y.Rubinstein, “Simulation and the Monte Carlo 
Method,” John Wiley & Sons, Inc., 1981. 

[13] Singhee. A and Rutenbar, R.A, “Practical, Fast 
Monte Carlo Statistical Static Timing Analysis :        

Why and How,” Proc. ICCAD, pp.190-195, 2008. 
[14] G. S. Fishman, “A First Course in Monte Carlo,” 

Duxbury, 2006. 
[15] T. T. Warnock, “Computational Investigations of 

Low-Discrepancy Point Sets II,” in Monte Carlo 
and Quasi-Monte Carlo Methods in Scientific 
Computing, Springer, pp. 354–361, 1995. 

[16] Fang, K. T., Ma, C. X. and Winker, P. ”Centered 
L2-discrepancy of Random Sampling and Latin 
Hypercube Design, and Construction of Uniform 
Designs,” Math. Comp. 71, 275-296, 2002. 

[17] P. Bratley and B. L. Fox, “Algorithm 659: 
Implementing Sobol’s quasirandom sequence 
generator,” ACM Transactions on Mathematical 
Software, vol. 14, no. 1, pp. 88–100, 1988. 

[18] J. Jaffari and M. Anis, “On Efficient Monte Carlo-
based Statistical Static Timing Analysis of Digital 
Circuits,” Proc. ICCAD, pp. 196–203, 2008. 

[19] G.E. Noether, “Introduction to Statistics: The 
Nonparametric Way,” Springer, 1990. 

[20] P. Glasserman, “Monte Carlo Methods in Financial 
Engineering,” Springer 2004. 

  

 
Eunsuk Park was born in Chung-Ju, 
korea, in 1979. He received the B.S. 
degree from the Departmene of 
Computer Science and Engineering 
at Sogang University in 2005. He 
received the M.S. degree in 
Computer Science and Engineering 

from Sogang University in 2007. He is currently 
pursuing a Ph.D. degree in Computer Science and  
Engineering at Sogang University. His research interests 
unclude variation-aware timing analysis, design for 
reliability enhancement, and fast monte-carlo simulation. 
 

Deokkeun Oh received the B.S. 
degree in computer engineering from 
Sogang University, Korea in 2012. 
He is currently pursuing a M.S. 
degree in computer engineering at 
Sogang University, Korea. His 
research interests are variation-aware 

timing analysis, Monte-Carlo analysis, design for 
reliability enhancement and low power. 



JOURNAL OF SEMICONDUCTOR TECHNOLOGY AND SCIENCE, VOL.15, NO.1, FEBRUARY, 2015 113 

 

Juho Kim received B.S degree and 
Ph.D degree in Computer and 
Information Science from University 
of Minnesota in 1987 and 1995, 
respectively. After getting Ph.D 
egree, he worked as a senior 
member of technical staff at Cadence 

Design System until 1997. Professor Kim joined the 
department of computer science and engineering in 
Sogang University, Seoul, Korea in 1997, and he was a 
department chair from 2005 to 2008. His research 
interests are variation-aware timing anaysis, low power 
design. 

 
 


