DOI QR코드

DOI QR Code

Resistance Potential of Bread Wheat Genotypes Against Yellow Rust Disease Under Egyptian Climate

  • Mahmoud, Amer F. (Department of Plant Pathology, Faculty of Agriculture, Assiut University) ;
  • Hassan, Mohamed I. (Department of Genetics, Faculty of Agriculture, Assiut University) ;
  • Amein, Karam A. (Department of Genetics, Faculty of Agriculture, Assiut University)
  • Received : 2014.12.15
  • Accepted : 2015.07.05
  • Published : 2015.12.01

Abstract

Yellow rust (stripe rust), caused by Puccinia striiformis f. sp. tritici, is one of the most destructive foliar diseases of wheat in Egypt and worldwide. In order to identify wheat genotypes resistant to yellow rust and develop molecular markers associated with the resistance, fifty F8 recombinant inbred lines (RILs) derived from a cross between resistant and susceptible bread wheat landraces were obtained. Artificial infection of Puccinia striiformis was performed under greenhouse conditions during two growing seasons and relative resistance index (RRI) was calculated. Two Egyptian bread wheat cultivars i.e. Giza-168 (resistant) and Sakha-69 (susceptible) were also evaluated. RRI values of two-year trial showed that 10 RILs responded with RRI value >6 <9 with an average of 7.29, which exceeded the Egyptian bread wheat cultivar Giza-168 (5.58). Thirty three RILs were included among the acceptable range having RRI value >2 <6. However, only 7 RILs showed RRI value <2. Five RILs expressed hypersensitive type of resistance (R) against the pathogen and showed the lowest Average Coefficient of Infection (ACI). Bulked segregant analysis (BSA) with eight simple sequence repeat (SSR), eight sequence-related amplified polymorphism (SRAP) and sixteen random amplified polymorphic DNA (RAPD) markers revealed that three SSR, three SRAP and six RAPD markers were found to be associated with the resistance to yellow rust. However, further molecular analyses would be performed to confirm markers associated with the resistance and suitable for marker-assisted selection. Resistant RILs identified in the study could be efficiently used to improve the resistance to yellow rust in wheat.

Keywords

References

  1. Afshari, F. 2004. Challenges of new race of Puccinia striiformis f. sp. tritici in Iran. In: Abstracts Second Regional Yellow Rust Conference of CWANA, Islamabad, Pakistan. 22-26 March, 2004.
  2. Akfirat, S. F., Aydin, Y., Ertugrul, F., Hasancebi, S., Budak, H., Akan, K., Mert, Z., Bolat, N. and Uncuoglu, A. A. 2010. A microsatelite marker for yellow rust resistance in wheat. Cereal Res. Commun. 38:203-210. https://doi.org/10.1556/CRC.38.2010.2.6
  3. Akhtar, M. A., Ahmad, I., Mirza, J. I., Rattu, A. R., E-Ul-Haque, Hakro, A. A. and Jaffery, A. H. 2002. Evaluation of Candidate Lines Against Stripe and Leaf Rusts Under National Uniform Wheat and Barley Yield Trial 2000-2001. Asian J. Plant Sci. 1:450-453. https://doi.org/10.3923/ajps.2002.450.453
  4. Bakhit, B. R. and Abdel-Fatah, B. E. 2013. Gene action and molecular markers associated with Orobanche resistance in faba bean (Vici faba L.). Biotechnology 12:1-13. https://doi.org/10.3923/biotech.2013.1.13
  5. Bariana, H. S., Brown, G. N., Ahmed, N. U., Khatkar, S., Conner, R. L., Wellings, C. R., Haley, S., Sharp, P. J. and Laroche, A. 2002. Characterization of Triticum vavilovii-derived stripe rust resistance using genetic, cytogenetic and molecular analyses and its marker assisted selection. Theor. Appl. Genet. 104:315-320. https://doi.org/10.1007/s001220100767
  6. Bariana, H. S., Parry, N., Barclay, I. R., Loughman, R., McLean, R. J., Shankar, M., Wilson, R. E., Willey, N. J. and Francki, M. 2006. Identification and characterization of stripe rust resistance gene Yr34 in common wheat. Theor. Appl. Genet. 112:1143-1148. https://doi.org/10.1007/s00122-006-0216-3
  7. Borner, A., Roder, M. S., Unger, O. and Meinel, A. 2000. The detection and molecular mapping of a major gene for nonspecific adult-plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Theor. Appl. Genet. 100:1095-1099. https://doi.org/10.1007/s001220051391
  8. Brown, J. K. M. and Hovmoller, M. S. 2002. Aerial Dispersal of Pathogens on the Global and Continental Scales and Its Impact on Plant Disease. Science 297:537-541. https://doi.org/10.1126/science.1072678
  9. Chague, V., Fahima, T., Dahan, A., Sun, G. L., Korol, A. B., Ronin, Y. I., Grama, A., Roder, M. S. and Nevo, E. 1999. Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome 42:1050-1056. https://doi.org/10.1139/g99-064
  10. Chague, V., Mercier, J. C., Guenard, M., de Courcel, A. and Vedel, F. 1997. Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor. Appl. Genet. 95:671-677. https://doi.org/10.1007/s001220050611
  11. Chen, X., Coram, T., Huang, X., Wang, M. and Dolezal, A. 2013. Understanding molecular mechanisms of durable and nondurable resistance to stripe rust in wheat using a transcriptomics approach. Curr. Genomics 14:111-126. https://doi.org/10.2174/1389202911314020004
  12. Cho, Y. G., Blair, M. W., Panaud, O. and McCouch, S. R. 1996. Cloning and mapping of variety-specific rice genomic DNA sequences: Amplified length polymorphisms (AFLP) from silver-stained polyacrylamide gels. Genome 39:373-378. https://doi.org/10.1139/g96-048
  13. Condit, R. and Hubbell, S. P. 1991. Abundance and DNA sequence of two-base repeat regions in tropical tree genomes. Genome 34:66-71. https://doi.org/10.1139/g91-011
  14. Das, M. K., Rajaram, S., Mundt, C. C. and Kronstad, W. E. 1992. Inheritance of slow rusting resistance to leaf rust in wheat. Crop Sci. 32:1452-1456. https://doi.org/10.2135/cropsci1992.0011183X003200060028x
  15. Demeke, T., Laroche, A. and Gaudet, D. A. 1996. A DNA marker for the BT-10 common bunt resistance gene in wheat. Genome 39:51-55. https://doi.org/10.1139/g96-007
  16. Diaz-Ruiz, R., Torres, A. M., Satovic, Z., Gutierrez, M. V., Cubero, J. I. and Roman, B. 2010.Validation of QTLs for Orobanche crenata resistance in faba bean (Vicia faba L.) across environments and generations. Theor. Appl. Genet. 120:909-919. https://doi.org/10.1007/s00122-009-1220-1
  17. El-Sayed, A. F., Soliman, S. S. A., Ismail, T. A. and Sabah, M. A. 2013. Molecular markers for Orobanche crenata resistance in faba bean (Vicia Faba L.) Using Bulked Segregant Analysis (BSA). Nat. Sci. 11:102-109.
  18. Eriksson, J. 1894. Uber die Spezialisierung des Parasitismus bei den Getreiderostpilzen. Ber. Dtsch. Bot. Ges. 12:292-331.
  19. Fang, T., Campbell, K. G., Liu, Z., Chen, X., Wan, A., Li, S., Liu, S., Cao, S., Chen, Y., Bowden, R. L., Carver, B. F. and Yan, L. 2011. Stripe rust resistance in the wheat cultivar Jagger is due to Yr17 and a novel resistance gene. Crop Sci. 51:2455-2465. https://doi.org/10.2135/cropsci2011.03.0161
  20. Gupta, P. K. and Varshney, R. K. 2000. The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163-185. https://doi.org/10.1023/A:1003910819967
  21. Hassebrauk, K. 1965. Nomenklatur, geographische Verbreitung und Wirtsbereich des Gelbrostes, Puccinia striiformis West. Mitt. Biol. Bundesanst. Land-Forstwirtsch. Berl.-Dahl. 116:1-75.
  22. Hogenhout, S. A., Van der Hoorn, R. A. L., Terauchi, R. and Kamoun, S. 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant-Microbe Interact. 22:115-122. https://doi.org/10.1094/MPMI-22-2-0115
  23. Hovmoller, M. S., Walter, S. and Justesen, A. F. 2010. Escalating threat of wheat rusts. Science 329:369-369. https://doi.org/10.1126/science.1194925
  24. Huang, X. Q. and Roder, M. S. 2004. Molecular mapping of powdery mildew resistance genes in wheat: A review. Euphytica 137:203-223. https://doi.org/10.1023/B:EUPH.0000041576.74566.d7
  25. Hussain, M. 1997. Report on Evaluation of Candidate Lines against Stripe and Leaf Rusts under National Uniform Wheat, Barley and Triticale Yield Trials, 1996-97. PARC, Islamabad, Pakistan, pp. 23.
  26. Khlestkina, E. K., Roder, M. S., Unger, O., Meinel, A. and Borner, A. 2007. More precise map position and origin of a durable non-specific adult plant disease resistance against stripe rust (Puccinia striiformis) in wheat. Euphytica 153:1-10.
  27. Kissana, S. N., Mujahid, Y. M. and Mustafa, Z. S. 2003. Wheat production and productivity 2002-2003. A technical report to apprise the issues and future strategies. National Agricultural Research Center, Pakistan Agricultural Research Council, Islamabad. 19 pp.
  28. Large, E. C. 1954. Growth stages in cereals-illustration of the Feekes scale. Plant Pathol. 3:128-129. https://doi.org/10.1111/j.1365-3059.1954.tb00716.x
  29. Li, G. and Quiros, C. F. 2001.Sequence-Related Amplified Polymorphism (SRAP) a new marker system based on a simple PCR reaction: Its application to mapping and gene tagging in Brassica. Theor. Appl. Genet. 103:455-461. https://doi.org/10.1007/s001220100570
  30. Lin, K. H., Lo, H. F., Lee, S. P., Kuo, C. G., Chen, J. T. and Yeh, W. L. 2006. RAPD markers for the identification of yield traits in tomatoes under heat stress via bulked segregant analysis. Hereditas 143:142-154. https://doi.org/10.1111/j.2006.0018-0661.01938.x
  31. Loegering, W. Q. 1959. Methods for Recording Cereal Rust Data in International Spring Wheat Rust Nursery (IRN). United States Department of Agriculture, Washington, DC., USA.
  32. Lowe, I., Jankuloski, L. C., Chao, S. M., Chen, X. M., See, D. and Dubcovsky, J. 2011. Mapping and validation of QTL which confer partial resistance to broadly virulent post-2000 North American races of stripe rust in hexaploid wheat. Theor. Appl. Genet. 123:143-157. https://doi.org/10.1007/s00122-011-1573-0
  33. Maccaferri, M., Stefanelli, S., Rotondo, F., Tuberosa, R. and Sanguineti, M. C. 2007. Relationships among durum wheat accessions. I. Comparative analysis of SSR, AFLP, and phenotypic data. Genome 50:373-384. https://doi.org/10.1139/G06-151
  34. Mackay, I. J. and Caligari, P. D. S. 2000. Efficiencies of $F_2$ and backcross generations for bulked segregant analysis using dominant markers. Crop Sci. 40:626-630. https://doi.org/10.2135/cropsci2000.403626x
  35. Mantovani, P., Maccaferri, M., Sanguineti, M. C., Tuberosa, R., Catizone, I., Wenzl, P., Thomson, B., Carling, J., Huttner, E., DeAmbrogio, E. and Kilian, A. 2008. An integrated DArT-SSR linkage map of durum wheat. Mol. Breed. 22: 629-648. https://doi.org/10.1007/s11032-008-9205-3
  36. McIntosh, R. A., Dubcovsky, J., Rogers, W. J., Morris, C. F., Appels, R. and Xia, X. C. 2011. Catalogue of gene symbols for wheat: 2011 Supplement. Annual Wheat Newsletter 57:303-321.
  37. McIntosh, R. A., Yamazaki, Y., Dubcovsky, J., Rogers, J., Morris, C., Appels, R. and Xia, X. C. 2013. Catalogue of gene symbols for wheat. The 12th International Wheat Genetics Symposium, 8-13 September 2013, Yokohama, Japan.
  38. Michelmore, R. W., Paran, I. and Kesseli, R. V. 1991. Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc. Natl. Acad. Sci. USA 88:9828-9832. https://doi.org/10.1073/pnas.88.21.9828
  39. Murray, M. G. and Thompson, W. F. 1980. Rapid isolation of high molcular weight plant DNA. Nucleic Acids Res. 8:4321-4325. https://doi.org/10.1093/nar/8.19.4321
  40. Nakamura, K., Ozaki, A., Akutsu, T., Iwai, K., Sakamoto, T. Toshizaki, G. and Okamoto, N. 2001. Genetic mapping of the dominant albino locus in rainbow trout (Oncorhychus mykiss). Mol. Genet. Genomics 265:687-693. https://doi.org/10.1007/s004380100464
  41. Peterson, R. F., Campbell, A. B. and Hannah, A. E. 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can. J. Res. 26:496-500.
  42. Qi, L., Cao, M., Chen, P., Li, W. and Liu, D. 1996. Identification, mapping, and application of polymorphic DNA associated with resistance gene Pm21 of wheat. Genome 39:191-197. https://doi.org/10.1139/g96-025
  43. Rashid, K. Y. 1997. Slow-rusting in flax cultivars. Can. J. Plant Pathol. 19:19-24. https://doi.org/10.1080/07060669709500566
  44. Robert, O., Dedryver, F., Leconte, M., Rolland, B. and De Vallavieille-Pope, C. 2000. Combination of resistance tests and molecular tests to postulate the yellow rust resistance gene Yr17 in bread wheat lines. Plant Breed. 119:467-472. https://doi.org/10.1046/j.1439-0523.2000.00530.x
  45. Roder, M. S., Korzun, V., Wendehake, K., Plaschke, J., Tixier, M. H., Leroy, P. and Ganal, M. W. 1998. A microsatellite map of wheat. Genetics 149:2007-2023.
  46. Rosewarne, G. M., Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Lan, C. X. and He, Z. H. 2013. Quantitative trait loci of stripe rust resistance in wheat. Theor. Appl. Genet. 126:2427-2449. https://doi.org/10.1007/s00122-013-2159-9
  47. Rostoks, N., Zale, J. M., Soule. J., Brueggeman, R., Druka, A., Kudrna, D., Steffenson, B. and Kleinhofs, A. 2002. A barley gene family homologous to the maize rust resistance gene Rp1-D. Theor. Appl. Genet. 104:1298-1306. https://doi.org/10.1007/s00122-002-0902-8
  48. Shen, X., Zhou, M., Lu, W. and Ohm, H. 2003. Detection of Fusarium head blight resistance QTL in a wheat population using bulked segregant analysis. Theor. Appl. Genet. 106:1041-1047. https://doi.org/10.1007/s00122-002-1133-8
  49. Singh, R. P., Duvillier, E. and Huerta-Espino, J. 2004. Virulence to yellow rust resistance gene Yr27: In: A new threat to stable wheat production in Asia. (Abs.). Second Regional yellow rust conference for CWANA, Islamabad, Pakistan. 22-26 march, 2004.
  50. Singh, R. P., Espino, J. H. and William, H. M. 2005. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turkish J. Agri. Forestry 29:121-127.
  51. Somers, D. J., Isaac, P. and Edwards, K. 2004. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L). Theor. Appl. Genet. 109:1105-1114. https://doi.org/10.1007/s00122-004-1740-7
  52. Sourdille, P., Singh, S., Cadalen, T., Brown-Guedira, G. L., Gay, G., Qi, L., Gill, B. S., Dufour, P., Murigneux, A. and Bernard, M. 2004. Microsatellite-based deletion bin system for the establishment of genetic-physical map relationships in wheat (Triticum aestivum L.). Func. Integr. Genomics 4: 12-25. https://doi.org/10.1007/s10142-004-0106-1
  53. Sthapit, J., Newcomb, M., Bonman, J. M., Chen, X. and See, D. R. 2014. Genetic diversity for stripe rust resistance in wheat landraces and identification of accessions with resistance to stem rust and stripe rust. Crop Sci. 54:2131-2139. https://doi.org/10.2135/cropsci2013.07.0438
  54. Stubbs, R. W. 1985. Stripe rust. In Cereal rusts. Vol. II. Disease, distribution, epidemiology, and control. Edited by A.P. Roelfs and W.R. Bushnell. Academic Press, New York. pp. 61-101.
  55. Sun, Q., Wei, Y., Ni, C., Xie, C. and Yang, T. 2002. Microsatellite marker for yellow rust resistance gene Yr5 introgressed from spelt wheat. Plant Breed. 121:539-541. https://doi.org/10.1046/j.1439-0523.2002.00754.x
  56. Tabassum, S. 2011. Evaluation of Advance Wheat Lines for Slow Yellow Rusting (Puccinia striiformis f. sp. Tritici). J. Agri. Sci. 3:239-249.
  57. Tervet, I. W. and Cassell, R. C. 1951. The use of cyclone spore separators in race identification of cereal rusts. Phytopathology 41:286-290.
  58. Torres, A. M., Avila, C. M., Gutierrez, N., Palomino, C., Moreno, M. T. and Cubero, J. 2010. Marker-assisted selection in faba bean (Vicia faba L.). Field Crops Research 115:243-252. https://doi.org/10.1016/j.fcr.2008.12.002
  59. Wang, H. Y., Wei, Y. M., Yan, Z. H. and Zheng, Y. L. 2007. EST-SSR DNA polymorphism in durum wheat (Triticum durum L.) collections. J. Appl. Genet. 40:365-369.
  60. Wang, B. T., Yuan, W. H., Li, G. B., Jin, X. Z. and Wang, F. 2000. Correlation analysis of slow-rusting factors to stripe rust in wheat cultivars and the clustering. Acta Phytophylacica Sinica 27:53-58.
  61. Wang, C., Zhang, Y., Han, D., Kang, Z., Li, G. and Cao, A. and Chen, P. 2008. SSR and STS markers for wheat stripe rust resistance gene Yr26. Euphytica 159:359-366. https://doi.org/10.1007/s10681-007-9524-1
  62. Wang, L. F., Ma, J. X., Zhou, R. H., Wang, X. M. and Jia, J. Z. 2002. Molecular tagging of the yellow rust resistance gene (Yr10) in common wheat, PI178383 (Triticum aestivum L.). Euphytica 124:71-73. https://doi.org/10.1023/A:1015689817857
  63. Watson, I. A. and De Sousa, C. N. A. .1983. Long distance transport of spores of Puccinia graminis tritici in the southern hemisphere. Proc. Linnean Soc. New South Wales 106:311-321.
  64. William, M., Singh, R. P., Huerta-Espino, J., Ortiz-Islas, S. and Hoisington, D. 2003. Molecular marker mapping of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology 93:153-159. https://doi.org/10.1094/PHYTO.2003.93.2.153
  65. Zhang, Q., Shen, B. Z., Dai, X. K., Mei, M. H., Saghai Maroof, M. A. and Li, Z. B. 1994. Using bulked extremes and recessive class to map genes for photoperiod-sensitive genetic make sterility in rice. Proc. Natl. Acad. Sci. USA 91:8675-8679. https://doi.org/10.1073/pnas.91.18.8675
  66. Zhou, X. L., Han, D. J., Gou, H. L., Wang, Q. L., Zeng, Q. D., Yuan, F. P., Zhan, G. M., Huang, L. L. and Kang, Z. S. 2014. Molecular mapping of a stripe rust resistance gene in wheat cultivar Wuhan 2. Euphytica 196:251-259. https://doi.org/10.1007/s10681-013-1028-6