DOI QR코드

DOI QR Code

A PARALLEL HYBRID METHOD FOR EQUILIBRIUM PROBLEMS, VARIATIONAL INEQUALITIES AND NONEXPANSIVE MAPPINGS IN HILBERT SPACE

  • Hieu, Dang Van (Department of Mathematics Hanoi University of Science)
  • Received : 2014.05.18
  • Published : 2015.03.01

Abstract

In this paper, a novel parallel hybrid iterative method is proposed for finding a common element of the set of solutions of a system of equilibrium problems, the set of solutions of variational inequalities for inverse strongly monotone mappings and the set of fixed points of a finite family of nonexpansive mappings in Hilbert space. Strong convergence theorem is proved for the sequence generated by the scheme. Finally, a parallel iterative algorithm for two finite families of variational inequalities and nonexpansive mappings is established.

Keywords

References

  1. P. K. Anh, Ng. Buong, and D. V. Hieu, Parallel methods for regularizing systems of equations involving accretive operators, Appl. Anal. 93 (2014), no. 10, 2136-2157. https://doi.org/10.1080/00036811.2013.872777
  2. P. K. Anh and C. V. Chung, Parallel hybrid methods for a finite family of relatively nonexpansive mappings, Numer. Funct. Anal. Optim. 35 (2014), no. 6, 649-664. https://doi.org/10.1080/01630563.2013.830127
  3. P. K. Anh and D. V. Hieu, Parallel and sequential hybrid methods for a finite fam- ily of asymptotically quasi $\phi$-nonexpansive mappings, J. Appl. Math. Comput. (2014), DOI:10.1007/s12190-014-0801-6.
  4. H. H. Bauschke, J. M. Borwein, and A. S. Lewis, The method of cyclic projections for closed convex sets in Hilbert space, Recent developments in optimization theory and nonlinear analysis (Jerusalem, 1995), 1-38, Contemp. Math., 204, Amer. Math. Soc., Providence, RI, 1997. https://doi.org/10.1090/conm/204/02620
  5. E. Blum and W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Program. 63 (1994), no. 1-4, 123-145.
  6. M. Burger and B. Kaltenbacher, Regularizing Newton-Kaczmarz methods for nonlinear ill-posed problems, SIAM J. Numer. Anal. 44 (2006), no. 1, 153-182. https://doi.org/10.1137/040613779
  7. P. L. Combettes and S. A. Hirstoaga, Equilibrium programming in Hilbert spaces, J. Nonlinear Convex Anal. 6 (2005), no. 1, 117-136.
  8. A. De Cezaro, M. Haltmeier, A. Leitao, and O. Scherzer, On steepest-descent-Kaczmarz method for regularizing systems of nonlinear ill-posed equations, Appl. Math. Comput. 202 (2008), no. 2, 596-607. https://doi.org/10.1016/j.amc.2008.03.010
  9. K. Goebel and W. A. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Math., vol. 28, Cambridge University Press, Cambridge, 1990.
  10. M. Haltmeier, R. Kowar, A. Leitao, and O. Scherzer, Kaczmarz methods for regularizing nonlinear ill-posed equations, Inverse Probl. Imaging 1 (2007), no. 2, 289-298. https://doi.org/10.3934/ipi.2007.1.289
  11. H. Iiduka and W. Takahashi, Strong convergence theorems for nonexpansive nonself- mappings and inverse-strongly-monotone mappings, J. Convex Anal. 11 (2004), no. 1, 69-79.
  12. S. Saeidi, Iterative methods for equilibrium problems, variational inequalities and fixed points, Bull. Iranian Math. Soc. 36 (2010), no. 1, 117-135.
  13. M. V. Solodov and B. F. Svaiter, Forcing strong convergence of proximal point iterations in a Hilbert space, Math. Program. 87 (2000), no. 1, 189-202. https://doi.org/10.1007/s101079900113
  14. W. Takahashi, Weak and strong convergence theorems for families of nonexpansive map- pings and their applications, Ann. Univ. Mariae Curie-Sklodowska Sect. A 51 (1997), no. 2, 277-292.
  15. W. Takahashi, Nonlinear Functional Analysis, Yokohama Publishers, Yokohama, 2000.
  16. S. Takahashi and W. Takahashi, Viscosity approximation methods for equilibrium prob- lems and fixed point in Hilbert spaces, J. Math. Anal. Appl. 331 (2007), no. 1, 506-515. https://doi.org/10.1016/j.jmaa.2006.08.036
  17. W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl. 118 (2003), no. 2, 417-428. https://doi.org/10.1023/A:1025407607560
  18. X. Yu, Y. Yao, and Y. C. Liou, Strong convergence of a hybrid method for pseudomono- tone variational inequalities and fixed point problem, An. St. Univ. "Ovidius" Constanta Ser. Mat. 20 (2012), no. 1, 489-504.
  19. C. Zhang, J. Li, and B. Liu, Strong convergence theorems for equilibrium problems and relatively nonexpansive mappings in Banach spaces, Comput. Math. Appl. 61 (2011), no. 2, 262-276. https://doi.org/10.1016/j.camwa.2010.11.002

Cited by

  1. A new shrinking gradient-like projection method for equilibrium problems 2017, https://doi.org/10.1080/02331934.2017.1372437
  2. WEAK AND STRONG CONVERGENCE OF SUBGRADIENT EXTRAGRADIENT METHODS FOR PSEUDOMONOTONE EQUILIBRIUM PROBLEMS vol.31, pp.4, 2016, https://doi.org/10.4134/CKMS.c150088
  3. Halpern subgradient extragradient method extended to equilibrium problems vol.111, pp.3, 2017, https://doi.org/10.1007/s13398-016-0328-9
  4. Parallel and cyclic hybrid subgradient extragradient methods for variational inequalities vol.28, pp.5-6, 2017, https://doi.org/10.1007/s13370-016-0473-5
  5. Hybrid projection methods for equilibrium problems with non-Lipschitz type bifunctions vol.40, pp.11, 2017, https://doi.org/10.1002/mma.4286
  6. Parallel hybrid methods for generalized equilibrium problems and asymptotically strictly pseudocontractive mappings vol.53, pp.1-2, 2017, https://doi.org/10.1007/s12190-015-0980-9
  7. An extension of hybrid method without extrapolation step to equilibrium problems vol.13, pp.2, 2016, https://doi.org/10.3934/jimo.2017015
  8. New subgradient extragradient methods for common solutions to equilibrium problems vol.67, pp.3, 2017, https://doi.org/10.1007/s10589-017-9899-4
  9. Cyclic subgradient extragradient methods for equilibrium problems vol.5, pp.3, 2016, https://doi.org/10.1007/s40065-016-0151-3
  10. An Explicit Parallel Algorithm for Variational Inequalities 2017, https://doi.org/10.1007/s40840-017-0474-z
  11. Modified hybrid projection methods for finding common solutions to variational inequality problems vol.66, pp.1, 2017, https://doi.org/10.1007/s10589-016-9857-6